$$
\mathrm{C}_{\max }=\frac{\mathrm{M}}{\mathrm{~A} * \sqrt{4 * \pi * \mathrm{~K} * \frac{\mathrm{x}}{\mathrm{~V}}}} * \exp (-\mathrm{k} * \mathrm{t})
$$

The result leads to Equation (6-7) for $\mathrm{k}=0$ (no reaction).
2- The standard deviation of the contaminant cloud equals : $\sigma=\sqrt{2 *} \mathrm{~K}^{*} \mathrm{t}$.

Sudden increase in mass concentration at the origin

The concentration is initially zero everywhere. At the initial time $t=0$, the concentration is suddenly raised to C_{o} at the origin $\mathrm{x}=0$ and held constant : $\mathrm{C}_{\mathrm{m}}(0, \mathrm{t} \geq 0)=\mathrm{C}_{\mathrm{O}}$. The dispersion equation becomes :

$$
\begin{equation*}
\mathrm{V} * \frac{\partial \mathrm{C}_{\mathrm{m}}}{\partial \mathrm{x}}=\mathrm{K} * \frac{\partial^{2} \mathrm{C}_{\mathrm{m}}}{\partial \mathrm{x}^{2}}-\mathrm{k} * \mathrm{C}_{\mathrm{m}} \tag{7-13}
\end{equation*}
$$

with the boundary condition : $\mathrm{C}_{\mathrm{m}}=0$ at $\mathrm{x}=+\infty$. A solution of the dispersion equation is :

$$
\begin{equation*}
\mathrm{C}_{\mathrm{m}}=\mathrm{C}_{\mathrm{o}} * \exp \left(-\frac{\mathrm{k} * \mathrm{x}}{\mathrm{~V}} *\left(\frac{2}{\alpha} *(\sqrt{\alpha+1}-1)\right)\right) \tag{7-14}
\end{equation*}
$$

where :

$$
\alpha=\frac{4 * \mathrm{~K} * \mathrm{k}}{\mathrm{~V}^{2}}
$$

and C_{O} is an integration constant. Neglecting the existence of the initial zone, the initial concentration C_{O} is equivalent to the steady release of $\stackrel{\bullet}{\mathrm{M}}$ units of mass per unit time into a river (discharge Q) :

$$
\begin{equation*}
\mathrm{C}_{\mathrm{O}}=\frac{\stackrel{\circ}{\mathrm{M}}}{\mathrm{Q}} *\left(\frac{2}{\alpha} *(\sqrt{\alpha+1}-1)\right) \tag{7-15}
\end{equation*}
$$

Remarks

$1-\alpha=4 * \mathrm{~K} * \mathrm{k} / \mathrm{V}^{2}$ is a dimensionless coefficient of reaction-dispersion. For biochemical oxygen demand, α is typically of the order : $\alpha<0.4$.
2 - In natural rivers and using Equations (5-6) and (6-8), it yields :

$$
\alpha=\frac{4 * \mathrm{~K} * \mathrm{k}}{\mathrm{~V}^{2}}=0.0264 * \frac{\mathrm{~W}^{2} * \mathrm{k}}{\varepsilon_{\mathrm{t}}}
$$

where W is the channel width and ε_{t} is the transverse mixing coefficient.

Discussion

The one-dimensional dispersion analysis (Eq. (7-10)) assumes that the contaminant is fully-mixed across the channel : i.e., it does not apply to the initial zone (Fig. 5-1). For a steady flow in rivers, the distance required for cross-section mixing is about (section 5.3) :

$$
\mathrm{L} \sim 0.4 * \mathrm{~V} * \mathrm{~W}^{2} / \varepsilon_{\mathrm{t}} \quad \text { complete mixing of side discharge }
$$

while the characteristic distance of contaminant decay is $\mathrm{V} / \mathrm{k}{ }^{(1)}$. The latter exceeds the cross-section mixing distance (i.e. $\mathrm{x}^{\prime}=0.4$) only if the dimensionless coefficient of reaction-dispersion α is less than about 0.066 .

[^0]
[^0]: ${ }^{1}$ Remember that the time required for decay of the contaminant to a factor e^{-1} is $1 / k$, during which the fluid is advected to a distance V/k.

