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REAL-FLUID FLOW TUTORIALS 

Attendance to tutorials is very strongly advised. Repeated absences by some individuals will be noted and 

these would demonstrate some disappointing responsible behaviour. 

 

Past course results demonstrated a very strong correlation between the performances at the end-of-semester 

examination, the attendance of tutorials during the semester and the overall course result. 

 

Further exercises and applications are available in the text: 

CHANSON, H. (2014). "Applied Hydrodynamics: An Introduction." CRC Press, Taylor & Francis Group, 

Leiden, The Netherlands, 448 pages & 21 video movies (ISBN 978-1-138-00093-3). 

 

Chapter I-1 

Exercise No. 1 

Let us consider the following fluid flows. In each case, calculate the critical range of flow velocities above 

which the flow becomes turbulent. 

 
Fluid Density Dynamic 

viscosity 
Channel dimensions V 

 kg/m3 Pa.s  m/s 
Water 998.2 1.005 E-3  = 0.15 m  
Air 1.2 1.7 E-5 Wind tunnel 

(3 m  2 m) 
 

Bentonite 
suspension (mud) 

1100 0.15 Rectangular open 
channel (0.35 m wide  

0.10 m depth) 

 

Blood 1050 4 E-3  = 2.2 mm  

 

Solutions: V = 6.7 mm/s to 6.7 cm/s (water); V = 6 mm/s to 6 cm/s (air); V = 0.54 to 54 m/s (bentonite); V = 

1.7 to 17 m/s (blood) 

 

Note: See movie 'Laminar and turbulent flows in a Reynolds experiment' in the textbook (p. 383). 

 

Exercise No. 2 

(a) Considering a plane Couette flow, the gap between the plate is 1 mm. One plate is fixed and the other is 

moving at 10 cm/s. If the measured shear stress is 1.34 Pa, calculate the fluid viscosity ? 
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(b) For the same experiment and fluid, what the maximum plate speed to ensure a laminar Couette flow 

motion. 

The fluid density is 960 kg/m3. 

 

Solutions: (a)  = 0.013 Pa.s; (b) Vo = 41 m/s. 

 

Exercise No. 3 

A rotating viscometer consists of two 0.6 m long co-axial cylinders with  = 0.3 m and 0.32 m respectively. 

(The gap between the cylinders is 1 cm.) The external cylinder is fixed and the outer cylinder is rotating at 

2.5 rpm. 

(a) Calculate the shear stress on the cylinder walls. 

(b) What is the shear stress in the fluid at 5 mm from the walls ? 

(c) Calculate the power required to drive the rotating viscometer. 

The fluid is a SAE40 oil (density: 871 kg/m3, viscosity: 0.6 Pa.s). 

Remember, the power equals the product of the angular velocity time the torque between the fluid and the 

moving cylinder. 

 

Solutions: (a) o = 2.43 Pa; (b) o = 2.43 Pa (Remember: the Couette flow is characterised by a constant 

shear stress distribution); (c) 0.06 W (Remember: the power equals the force times the velocity, or the torque 

times the angular velocity) 

 

 

Exercise No. 4 

A blood solution is tested in a cylindrical Coutte viscosimeter. The apparatus is 0.100 m high. The inner, 

rotating cylinder has an outer diameter of 40.0 mm and the outer (fixed) cylinder has an inner diameter of 

40.4 mm. The rotation speed is 6.1 rpm. 

(a) Calculate the shear stress on the outer cylinder wall. 

(b) What is the shear stress in the fluid at 0.2 mm from the walls? 

(c) Sketch the velocity profile between the cylinders. 

(d) Calculate the torque on the inner cylinder. 

(e) Calculate the power required to drive the viscometer. 

The blood density is 1051 kg/m3 and its viscosity is 4.1 E-3 Pa.s. 

 

Solution 

(a) The shear stress distribution is uniform between the two cylinders. Assuming a quasi-two-dimensional 

Couette flow: 

   =  o  =    V/D  =  0.262 Pa 
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where V = R = 0.0128 m/s and D = 0.2 mm. 

(d) Torque = 6.6 E-5 N/m 

(e) Power = 4.2 E-5 W 

 

Exercise No. 5 

Considering a plane flow between two plates, one plate is at rest while the other is moving at speed Vo = 0.75 

m/s. The gap between the plates is 5 mm and the fluid is a viscous oil ( = 1,050 kg/m3,  = 0.011 Pa.s). 

Calculate the shear stress on the plate at rest and the flow rate per unit width between the plates. 

 

Solution 

The Reynolds number is: VoD/ = 360 (laminar flow motion) 

o = Vo/D = 1.65 Pa 

 
D

0

dyVq  = 1.875×10-3 m2/s 
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Chapter II-2 

Exercise No. 1 

Turbulent velocity measurements were conducted in Eprapah Creek at 0.2 m above the creek bed. The data 

were recorded mid-estuary on 16 May 2005. 

 
Time (s) Vx (cm/s) Time (s) Vx (cm/s) Time (s) Vx (cm/s) Time (s) Vx (cm/s) 
66030.98 0.0548 66033.34 0.0566 66035.82 0.0537 66038.42 0.0583 

66031.02 0.0559 66033.38 0.0576 66035.86 0.0554 66038.46 0.0554 

66031.06 0.0532 66033.42 0.054 66035.9 0.0593 66038.5 0.059 

66031.1 0.0588 66033.46 0.0578 66035.94 0.0548 66038.54 0.0559 

66031.14 0.0588 66033.5 0.0546 66035.98 0.0616 66038.58 0.0506 

66031.18 0.0568 66033.54 0.0593 66036.02 0.0544 66038.62 0.0629 

66031.22 0.0585 66033.58 0.06 66036.06 0.051 66038.66 0.0591 

66031.26 0.057 66033.62 0.0546 66036.1 0.0542 66038.7 0.0534 

66031.3 0.0592 66033.66 0.061 66036.14 0.0575 66038.74 0.062 

66031.34 0.0596 66033.7 0.0608 66036.18 0.0496 66038.78 0.0591 

66031.38 0.0602 66033.74 0.0615 66036.22 0.0517 66038.82 0.0549 

66031.42 0.0603 66033.78 0.0616 66036.26 0.0538 66038.86 0.0642 

66031.46 0.0618 66033.82 0.064 66036.3 0.0547 66038.9 0.0649 

66031.5 0.0622 66033.86 0.0563 66036.34 0.0506 66038.94 0.0653 

66031.54 0.0643 66033.9 0.0606 66036.38 0.0487 66038.98 0.0687 

66031.58 0.0597 66033.94 0.0615 66036.42 0.0535 66039.02 0.0606 

66031.62 0.0646 66033.98 0.06 66036.46 0.0516 66039.06 0.0639 

66031.66 0.0641 66034.02 0.0595 66036.5 0.0513 66039.1 0.0609 

66031.7 0.059 66034.06 0.0589 66036.54 0.0494 66039.14 0.0662 

66031.74 0.0612 66034.1 0.0633 66036.58 0.0497 66039.18 0.0708 

66031.78 0.0589 66034.14 0.0589 66036.62 0.0538 66039.22 0.0702 

66031.82 0.0563 66034.18 0.0578 66036.66 0.0503 66039.26 0.0689 

66031.86 0.0549 66034.22 0.0544 66036.7 0.0523 66039.3 0.0617 

66031.9 0.0582 66034.26 0.0548 66036.74 0.0554 66039.34 0.0639 

66031.94 0.0546 66034.3 0.0638 66036.78 0.0567 66039.38 0.0666 

66031.98 0.0567 66034.34 0.0632 66036.82 0.057 66039.42 0.0616 

66032.02 0.0551 66034.38 0.0615 66036.86 0.0601 66039.46 0.064 

66032.06 0.0542 66034.42 0.0626 66036.9 0.0563 66039.5 0.0686 

66032.1 0.0505 66034.46 0.0637 66036.94 0.0588 66039.54 0.0649 

66032.14 0.0517 66034.5 0.0609 66036.98 0.0584 66039.58 0.0618 

66032.18 0.0505 66034.54 0.0677 66037.02 0.0525 66039.62 0.0634 

66032.22 0.0541 66034.58 0.0671 66037.06 0.0596 66039.66 0.0659 

66032.26 0.0506 66034.62 0.0684 66037.1 0.0556 66039.7 0.0668 

66032.3 0.0541 66034.66 0.0651 66037.14 0.0543 66039.74 0.0578 

66032.34 0.0492 66034.7 0.0664 66037.18 0.0584 66039.78 0.0537 

66032.38 0.0515 66034.74 0.0668 66037.22 0.056 66039.82 0.0614 

66032.42 0.0478 66034.78 0.0687 66037.26 0.0552 66039.86 0.0609 

66032.46 0.0568 66034.82 0.0648 66037.3 0.0575 66039.9 0.0647 

66032.5 0.0511 66034.86 0.0706 66037.34 0.0555 66039.94 0.0666 

66032.54 0.0531 66034.9 0.0618 66037.38 0.0559 66039.98 0.0656 

66032.58 0.0535 66034.94 0.0629 66037.42 0.0576 66040.02 0.0643 

66032.62 0.0581 66034.98 0.0677 66037.46 0.0603 66040.06 0.0645 

66032.66 0.0507 66035.02 0.0673 66037.5 0.0599 66040.1 0.0659 

66032.7 0.0549 66035.06 0.066 66037.54 0.062 66040.14 0.0564 

66032.74 0.0533 66035.1 0.0658 66037.58 0.0579 66040.18 0.0566 

66032.78 0.0449 66035.14 0.067 66037.62 0.052 66040.22 0.0643 

66032.82 0.0572 66035.18 0.0667 66037.66 0.0558 66040.26 0.0637 
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66032.86 0.051 66035.22 0.0607 66037.7 0.0515 66040.3 0.0653 

66032.9 0.0599 66035.26 0.0633 66037.74 0.0499 66040.34 0.0626 

66032.94 0.0568 66035.3 0.0669 66037.78 0.0551 66040.38 0.064 

66032.98 0.0579 66035.34 0.0617 66037.82 0.0521 66040.42 0.0626 

66033.02 0.0507 66035.38 0.0591 66037.86 0.0508 66040.46 0.0674 

66033.06 0.0521 66035.42 0.0617 66037.9 0.0584 66040.5 0.0638 

66033.1 0.0554 66035.46 0.0616 66037.94 0.0503 66040.54 0.0652 

66033.14 0.0558 66035.5 0.0551 66037.98 0.0558 66040.58 0.0648 

66033.18 0.0581 66035.54 0.0593 66038.02 0.0521 66040.62 0.064 

66033.22 0.0579 66035.58 0.0537 66038.06 0.0579 66040.66 0.0642 

66033.26 0.0551 66035.62 0.0597 66038.1 0.0551 66040.7 0.0624 

66033.3 0.0594 66035.66 0.0628 66038.14 0.054 66040.74 0.0669 

  66035.7 0.0583 66038.18 0.0569 66040.78 0.0636 

  66035.74 0.0583 66038.22 0.0576 66040.82 0.0705 

  66035.78 0.0554 66038.26 0.0567 66040.86 0.065 

    66038.3 0.0535 66040.9 0.0706 

    66038.34 0.0581 66040.94 0.0691 

    66038.38 0.0591   

 

(a) For the following 10 s record, plot the instantaneous velocity as a function of time. 

(b) Calculate the time-average, standard deviation, skewness and kurtosis of the longitudinal velocity. 

(c) Calculate the integral time scale and the dissipation time scale. 

(d) calculate and plot the probability distribution function of the longitudinal velocity. 

For the calculation of the dissipation time scale, compare the results obtained using a parabolic 

approximation of the auto-correlation function and the method of HALLBACK et al. 1989). The data were 

collected by TREVETHAN et al. (2006). 

 

Solutions: 
Vavg = 0.059 m/s time-averaged 
Vmed = 0.059 m/s median value 
Vstd = 0.00534 m/s standard deviation 
Skew = 0.0812 skewness 
Kurt = -0.669 kurtosis 
TE = 0.3985 s integral time-scale 
E = -0.00332 s dissipation time-scale (meaningless !) 

 

Exercise No. 2 

The following data set was recorded in a steady open channel flow at 0.057 m above the bed. 

 
Time (s) Vx (cm/s) Time (s) Vx (cm/s) Time (s) Vx (cm/s) Time (s) Vx (cm/s) 

4.00 108.1 4.5 108.7 5.00 114.2 5.5 110.2 

4.02 107.3 4.52 110.2 5.02 111.9 5.52 106.7 

4.04 107.4 4.54 109.3 5.04 110.9 5.54 108.71 

4.06 107.9 4.56 110.2 5.06 109.7 5.56 109.9 

4.08 109.4 4.58 108.4 5.08 111.4 5.58 109.5 

4.1 108.3 4.6 110.1 5.1 111.1 5.6 109.2 

4.12 110.5 4.62 110.1 5.12 110.4 5.62 110.6 

4.14 111.7 4.64 109.4 5.14 110.0 5.64 112.8 

4.16 110.8 4.66 111.5 5.16 111.3 5.66 112.2 
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4.18 110.2 4.68 111.8 5.18 108.7 5.68 112.6 

4.2 110.1 4.7 111.2 5.2 112.4 5.7 111.6 

4.22 109.2 4.72 112.2 5.22 108.4 5.72 111.8 

4.24 108.9 4.74 110.8 5.24 112.2 5.74 109.8 

4.26 110.8 4.76 109.6 5.26 111.9 5.76 108.1 

4.28 109.8 4.78 111.1 5.28 109.2 5.78 109.8 

4.3 109.1 4.8 108.0 5.3 111.1 5.8 110.5 

4.32 108.9 4.82 107.6 5.32 109.1 5.82 109.8 

4.34 108.0 4.84 108.9 5.34 107.6 5.84 110.4 

4.36 109.3 4.86 110.2 5.36 112.0 5.86 108.4 

4.38 109.6 4.88 109.3 5.38 109.5 5.88 109.1 

4.4 110.9 4.9 107.8 5.4 109.9 5.9 107.7 

4.42 110.5 4.92 109.4 5.42 112.1 5.92 109.8 

4.44 111.4 4.94 110.5 5.44 111.5 5.94 111.4 

4.46 110.4 4.96 112.0 5.46 111.5 5.96 112.1 

4.48 110.1 4.98 113.0 5.48 112.1 5.98 110.9 

 

(a) For the data set, plot the instantaneous velocity as a function of time. 

(b) Calculate the time-average and standard deviation of the longitudinal velocity. What is the turbulence 

intensity defined as Tu = v2/ V
 ? 

 

Solutions 
Vavg = 110.14 cm/s time-averaged 
Vmed = 110.10 cm/s median value 
Vstd = 1.489 cm/s standard deviation 
Skew = 0.0296 skewness 
Kurt = -0.419 kurtosis 
Tu = 1.35% turbulence intensity 
TE = 0.028 s integral time-scale 
E = 0.0028 s dissipation time-scale 

 

Exercise No. 3 

The steady open channel flow situation, analysed in Exercise 2, is suddenly affected by the passage of a tidal 

bore. Both the instantaneous and time-averaged velocity data are listed below. The data was recorded at 

0.057 m above the bed. (Note that the flow is unsteady and the time-averaged velocity is a variable time 

average.) 

 

Instantaneous longitudinal velocity 

 
Time (s) Vx (cm/s) Time (s) Vx (cm/s) Time (s) Vx (cm/s) Time (s) Vx (cm/s) 

12 67.5026 12.5 60.0794 13 79.6718 13.5 86.1862 

12.02 69.7268 12.52 65.5508 13.02 80.8693 13.52 89.5882 

12.04 64.5371 12.54 59.4951 13.04 79.989 13.54 86.3987 

12.06 66.7903 12.56 63.3117 13.06 78.3692 13.56 88.8158 

12.08 66.3739 12.58 69.5743 13.08 76.1492 13.58 86.9115 

12.1 66.5177 12.6 69.9598 13.1 77.1707 13.6 89.9447 

12.12 69.6151 12.62 64.1634 13.12 82.6693 13.62 85.8272 

12.14 67.807 12.64 64.6971 13.14 84.1862 13.64 86.1953 
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12.16 66.1124 12.66 65.1664 13.16 82.9088 13.66 89.7416 

12.18 66.3661 12.68 63.1063 13.18 83.9595 13.68 86.5472 

12.2 67.3087 12.7 63.2548 13.2 82.643 13.7 90.1726 

12.22 60.6616 12.72 64.2278 13.22 84.8607 13.72 91.3913 

12.24 61.6533 12.74 70.6123 13.24 85.4088 13.74 88.1052 

12.26 62.1375 12.76 75.9225 13.26 85.1977 13.76 86.5433 

12.28 61.298 12.78 76.8025 13.28 86.2025 13.78 90.6055 

12.3 67.3146 12.8 71.0797 13.3 84.7838 13.8 90.0265 

12.32 68.2022 12.82 71.7941 13.32 85.5499 13.82 91.2321 

12.34 68.7461 12.84 67.3993 13.34 83.6273 13.84 89.5507 

12.36 63.1782 12.86 72.2021 13.36 80.6722 13.86 90.2612 

12.38 67.9926 12.88 72.7026 13.38 80.7049 13.88 86.9007 

12.4 70.3569 12.9 74.1936 13.4 84.4192 13.9 81.6948 

12.42 66.5494 12.92 76.7423 13.42 84.3725 13.92 81.8264 

12.44 65.036 12.94 79.0459 13.44 83.2162 13.94 85.5667 

12.46 60.316 12.96 78.1772 13.46 86.4487 13.96 87.0048 

12.48 58.4519 12.98 76.7767 13.48 83.8549 13.98 81.9291 

 

"Time-averaged velocity " (variable time average) 

 
Time (s) Vx (cm/s) Time (s) Vx (cm/s) Time (s) Vx (cm/s) Time (s) Vx (cm/s) 

12 68.59311 12.5 66.13795 13 77.34149 13.5 85.44806 

12.02 68.44279 12.52 66.27083 13.02 77.86089 13.52 85.65064 

12.04 68.27196 12.54 66.4389 13.04 78.36785 13.54 85.84535 

12.06 68.08396 12.56 66.64473 13.06 78.8607 13.56 86.02884 

12.08 67.88306 12.58 66.89004 13.08 79.33774 13.58 86.19742 

12.1 67.6742 12.6 67.17561 13.1 79.79732 13.6 86.34727 

12.12 67.4626 12.62 67.50117 13.12 80.23791 13.62 86.47462 

12.14 67.25348 12.64 67.86545 13.14 80.65817 13.64 86.57596 

12.16 67.0517 12.66 68.26624 13.16 81.05708 13.66 86.64817 

12.18 66.86144 12.68 68.70055 13.18 81.43394 13.68 86.68868 

12.2 66.68604 12.7 69.1648 13.2 81.78855 13.7 86.69551 

12.22 66.5278 12.72 69.65499 13.22 82.12116 13.72 86.66734 

12.24 66.38803 12.74 70.16697 13.24 82.43256 13.74 86.60349 

12.26 66.26709 12.76 70.69659 13.26 82.72404 13.76 86.50391 

12.28 66.16457 12.78 71.23991 13.28 82.9974 13.78 86.36909 

12.3 66.07955 12.8 71.79326 13.3 83.2548 13.8 86.2 

12.32 66.01086 12.82 72.35341 13.32 83.49874 13.82 85.99802 

12.34 65.95744 12.84 72.91752 13.34 83.73186 13.84 85.76487 

12.36 65.91856 12.86 73.48317 13.36 83.95681 13.86 85.50253 

12.38 65.8941 12.88 74.04832 13.38 84.17605 13.88 85.21317 

12.4 65.88468 12.9 74.61121 13.4 84.39172 13.9 84.89915 

12.42 65.89173 12.92 75.17034 13.42 84.60543 13.92 84.56292 

12.44 65.91749 12.94 75.72429 13.44 84.81812 13.94 84.20699 

12.46 65.96483 12.96 76.27171 13.46 85.02999 13.96 83.83385 

12.48 66.03713 12.98 76.81126 13.48 85.24045 13.98 83.44594 

 

(a) For the data set, plot the instantaneous velocity and variable time average velocity as functions of time. 

(b) Calculate the standard deviation and turbulence intensity defined as Tu = v2/ V
 of the longitudinal 

velocity. 

(c) Compare the results with the steady flow conditions (Exercise 2). 

All the velocities are positive in the downstream direction. Data obtained by KOCH and CHANSON (2005). 
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Solutions: 
Vavg = 76.29 cm/s time-averaged 
Vstd = 3.113 cm/s standard deviation 
Skew = -0.459 skewness 
Kurt = -0.5176 kurtosis 
Tu = 4.1 % turbulence intensity 
TE = 0.024 s integral time-scale 

A comparison with the steady flow results obtained in the same channel prior to the arrival of the tidal bore 

(Exercise No. 2) shows that the passage of the undular bore is associated with higher turbulence levels (3 

times higher) and smaller integral turbulent time scale. 

 

Exercise No. 4 

For the following data set: 

(a) Plot the data, and 

(b) Calculate the time-averaged and standard deviation of the normal and tangential stresses. 

 
Time (s) Vx (cm/s) Vz (cm/s) Time (s) Vx (cm/s) Vz (cm/s) Time (s) Vx (cm/s) Vz (cm/s)

0.02 -1.54 3.19 0.82 -2.46 3.37 1.62 -2.14 2.92 

0.06 -1.97 3.16 0.86 -2.27 3.01 1.66 -2.47 2.88 

0.1 -1.95 3.28 0.9 -3.45 2.62 1.7 -2.35 3.45 

0.14 -2.28 3.06 0.94 -2.82 2.62 1.74 -1.77 2.87 

0.18 -1.83 3.12 0.98 -2.13 2.42 1.78 -1.8 2.75 

0.22 -2.3 3.16 1.02 -2.47 3.01 1.82 -2.38 2.86 

0.26 -1.5 2.75 1.06 -2.6 3.27 1.86 -2.76 2.88 

0.3 -1.92 3.71 1.1 -2.21 2.68 1.9 -1.68 3.09 

0.34 -2.49 3.55 1.14 -2.62 2.56 1.94 -2.36 3.05 

0.38 -2.67 2.77 1.18 -2.63 2.93 1.98 -2.7 2.92 

0.42 -2.41 3.08 1.22 -4.61 2.9 2.02 -2.71 3.11 

0.46 -2.83 3.04 1.26 -2.72 3.03 2.06 -2.21 3.1 

0.5 -2.21 2.92 1.3 -2.29 2.79 2.1 -2.58 2.86 

0.54 -2 2.83 1.34 -2.84 2.4 2.14 -2.6 3.61 

0.58 -1.7 2.97 1.38 -2.8 2.55 2.18 -1.61 2.87 

0.62 -4.05 3.32 1.42 -2.39 2.61 2.22 -2.04 3.29 

0.66 -2.59 2.99 1.46 -3.12 1.95 2.26 -1.76 3.49 

0.7 -2.68 2.84 1.5 -2.41 3.14 2.3 -1.64 3.76 

0.74 -2.41 3.41 1.54 -1.88 3.29 2.34 -1.72 3.32 

0.78 -2.24 3.09 1.58 -2.08 2.61 2.38 -2.14 2.93 

 

The data set was collected in Eprapah Creek estuary on 4 April 2004 (CHANSON 2003). The water density 

was about 1015 kg/m3 (for brackish waters). Vx is positive upstream and the transverse velocity Vz is 

positive towards the right bank. 

 

Exercise No. 5 

Considering a turbulent Couette flow between two parallel plates (Fig. 1-7), one plate moving at speed V1 

and the other moving at speed V2, express the velocity distribution between the plate. 
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Assume that the "eddy viscosity" may be estimated by a parabolic distribution: 

 T  =  K  V*  y  



1 - 

y
D  

where K is the von Karman constant (K = 0.40) and D is the distance between plates (Chapter II-1). 

 

Solution 

For V1 = 0 and V2 = Vo, the solution is developed in Chapter II-1. It may be extended easily for V1  0. 

 

Exercise No. 6 

In a steady turbulent flow between two flat plates (Fig. E-II-2-1), find a suitable Prandtl mixing length 

distribution. Derive the velocity profile. Discuss the result. 

 

 

Notes 

See a number of relevant movies in the textbook (pp. 379-386). 
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Fig. E-II-2-1 - Turbulent flow between plates 

(A) Definition sketch 

 

 

(B) Dimensionless velocity and mixing length distribution 

(Vmax-Vx)/V*
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D
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Solution 

Let us define y the distance from the channel centreline. The mixing length may be taken proportional the 

distance from the plate: 

 lm  =  K  



D

2 - y  for y  0 

Replacing into Equation (2-18),  

 
Vmax - Vx

V*
  =  

1
K  Ln







1

1 - 2
y
D

 for y  0 

where V* is the shear velocity (V* = (o/)1/2) and Vmax is the centreline velocity. The results are presented in 

Figure E-II-2-1B. 
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Note that, on the channel centreline (y = 0), the velocity derivative is not continuous 
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Chapter II-3 

Exercise No. 1 

In a developing boundary layer, the velocity distribution follows: 

 
y (mm) Vx (m/s) 

0.5 0.271 
1 0.518 
2 1.113 

3.5 1.93 
6 3.137 
8 4.157 

10.2 5.32 
14 7.28 
18 9.22 
21 10.79 
35 11.3 
41 11.52 
58 11.55 

60.5 11.51 
66 11.5 
70 11.6 
90 11.59 

100 11.50 

 

Calculate the boundary layer thickness, the displacement thickness, the momentum thickness and the energy 

thickness. 

 

Solution:  = 37.3 mm; 1 = 11.6 mm; 2 = 4.3 mm; 3 = 6.7 mm. 

 

Exercise No. 2 

Considering a laminar boundary layer. 

(a) Using a power series, demonstrate the asymptotic solutions of the velocity distribution: 

 
Vx
Vo

  =  0.332 * 
y
x  Rex for 

y
x  Rex << 1 

 
Vx
Vo

  =  1 for 
y
x  Rex > 6 

(b) For the developing boundary layer, calculate the boundary shear stress at a distance x from the plate 

leading edge: 

 o  =     





Vx

y y=0
 

(c) Based upon the above result, calculate the shear force acting on a plate of length L and width B. 
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Exercise No. 3 

Let us consider a plane developing boundary layer with zero pressure gradient and a free-stream velocity Vo 

= 0.1 m/s. 

(a) Plot the velocity profile at x = 0.12 m. First you must assess if the flow motion is laminar or turbulent. 

(b) Calculate the boundary layer thickness, the displacement thickness, and the momentum thickness at x = 

0.12 m. 

(c) Calculate and plot the boundary shear stress for 0  x  0.2 m. 

(d) Compute the overall friction force on the 0.2 m long 0.3 m wide plate. 

The fluid is blood (density: 1050 kg/m3, viscosity: 4 E-3 Pa.s). 

 

Solutions: (b)  = 0.010 m, 1 = 3.7 mm, 2 = 1.4 mm.  (d) Fshear = 0.0058 N 

 

Exercise No. 4 

Velocity measurements were conducted at 3 locations along a developing laminar boundary layer. 

 
y  Vx  

mm cm/s cm/s cm/s 
x (m) = 0.05 0.10 0.20 

0.5 0.52 0.45 0.44 
1 1.00 0.58 0.47 
2 1.62 1.02 0.83 

3.5 2.80 1.87 1.31 
6 4.51 3.21 2.17 
8 5.88 4.21 3.10 

10.2 7.53 5.13 3.67 
14 10.39 7.24 5.26 
18 11.47 9.09 6.69 
21 11.55 10.71 7.49 
35 11.62 11.46 10.55 
41 11.54 11.69 11.45 
58 11.60 11.52 11.55 

60.5 11.67 11.69 11.67 
66 11.58 11.70 11.67 
70 11.66 11.57 11.66 
90 11.58 11.54 11.69 

100 11.69 11.53 11.67 

 

(a) Using the momentum integral equation, calculate the boundary shear stress at x = 0.1 m. 

(b) Based upon the momentum integral equation, integrate numerically the boundary shear stress to estimate 

the friction force per unit width on the 0.2 m long plate. 

(c) Compare your results with the theoretical calculations (Blasius equation) and with the approximate 

solution assuming a quadratic velocity distribution. Check that the flow laminar before conducting the 

comparison. 

The fluid is a bentonite suspension (density: 1115 kg/m3, viscosity: 0.19 Pa.s, mass concentration: 17%). 
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Solutions: 

(a) The free-stream velocity is about 11.6 cm/s. 

(b) 
 Momentum integral equation Blasius solution 
o (x=0.1 m) (Pa) = 0.41 0.6 
Fshear/B (N/m) = 0.083 1.47 

 

Exercise No. 5 

Assuming that the velocity profile in a laminar boundary layer satisfies a polynomial of fourth degree, apply 

the momentum integral equation. 

(a) Derive the expression of the velocity profile. Write carefully the boundary conditions. 

(b) Derive mathematically the expression of the boundary layer thickness, bed shear stress and total shear 

force. 

 

Exercise No. 6 

Assuming that the velocity profile in a laminar boundary layer satisfies a polynomial of third degree, apply 

the momentum integral equation. 

(a) Derive the expression of the velocity profile. Write carefully the boundary conditions. 

(b) Derive mathematically the expression of the boundary layer thickness, displacement thickness and 

momentum thickness. 

(c) Derive the expressions of the bed shear stress and total shear force. 

(d) Compare your results with the Blasius solution. 

 

Solution 

(a) Let us assume that the velocity profile above a flat plate may be expressed as: 

 
Vx
Vo

  = a0  +  a1  
y
  +  a2  



y


2
  + a3  



y


3
  

where a0, a1, a2 and a3 are undetermined coefficients, The coefficients are determined from the boundary 

conditions: Vx(y=0) = 0, Vx(y=) = Vo, (Vx/y) = 0 for y =  and (2Vx/y2) = 0 for y =  The velocity 

distribution is found to be: 

 
Vx
Vo

  =  3  
y
  -  3  



y


2
  +  



y


3
  

(b) The von Karman momentum integral equation for a flat plate becomes: 

 Vo
2  


x

(2)  =  
o
   

For a velocity profile satisfying a polynomial of third degree, the momentum thickness equals: 
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 2  =  




0 

 +
Vx
Vo

  








1 - 
Vx
Vo

  dy  =  
3

28   

The bed shear stress is defined as: 

 o  =     





Vx

y y=0
  =  

3   Vo
  

The momentum integral equation yields: 

 
3

28  Vo
2  

 
x

  =  

  

3  Vo
   

The integration gives the expression of the boundary layer growth: 

   =  14  
x
Rex

  

The displacement thickness and momentum thickness equal: 

 1  =  

4  =  

7
2  

x
Rex

  

 2  =  
3

28    =  
9

56  
x
Rex

  

(c) The boundary shear stress is deduced from the momentum integral equation: 

 
o

1
2    Vo

2
  =  2  


x

(2)  =  
9

56  
1
Rex

 

The dimensionless boundary shear force per unit width equals: 

 


x=0 

 L
o  dx

1
2    Vo

2  L
  =  

9
14  

1
ReL
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(d) The results are compare with the Blasius analytical solution below: 
Boundary layer 

parameter 
Approximate solution Theoretical solution 

Velocity 
distribution: 

Vx
Vo

  =  3  
y
  -  3  



y


2
  +  



y


3
 

Blasius equation 

  =  
3.74  

x
Rex

 4.91  
x
Rex

 

1  =  
1.87  

x
Rex

 1.72  
x
Rex

 

2  =  
0.40  

x
Rex

 0.664  
x
Rex

 

o
1
2    Vo

2
 

0.40
Rex

 
0.664

Rex
 


x=0 

 L
o  dx

1
2    Vo

2  L
 

0.80
ReL

 
1.328

ReL
 

 

Exercise No. 7 

Let us consider a laminar wake behind a 0.5 m long plate. 

(a) Calculate the total drag force (per unit width) on the plate. 

(b) Estimate at what distance, downstream of the plate, the velocity profile will recover (within 2% of the 

free-stream velocity)? 

The free-stream velocity is 0.35 m/s and the fluid is a viscous SAE40 oil (density: 871 kg/m3, viscosity: 0.6 

Pa.s). 

 

Solution 

(a) Drag per unit width = 4.4 N/m 

(b) x/L = 350 (x = 175 m !!!) 

 

Exercise No. 8 

Some fluid is injected in a vast container where the surrounding fluid is at rest. The nozzle height is 0.15 mm 

and the injected velocity is 1 cm/s. 

(b) Calculate the maximum jet velocity at distances of 1.5 mm, 2 cm and 18 cm from the nozzle. 

(b) At a distance of 18 cm from the nozzle, estimate the volume discharge of entrained fluid (per unit width). 

Assume a two-dimensional jet. 

The fluid is blood (density: 1050 kg/m3, viscosity: 4 E-3 Pa.s). 
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Solution 
 x = 1.5 mm x = 2 cm x = 18 cm 
Maximum Vx/Vo = 15.5 % 6.5 % 3.1 % 
Q/(VoD) = -- -- 48 

 

Exercise No. 9 

Let us consider a laminar flow down an inclined plane (Fig. EII-3-1) at uniform equilibrium. 

(a) Derive the shear stress distribution in the direction normal to the plane. 

(b) Express the pressure distribution in the direction normal to the plane. 

(c) Deduce the laminar flow velocity. 

 

Fig. II-E-3-1 - Laminar flow down an inclined plane 

 

 

Solution 

(a) The problem is solved by applying the momentum principle to the control volume sketched above. At 

uniform equilibrium down the slope, the velocity distribution and water depth d are independent of the 

distance x along the slope. The application of the momentum principle along the x-direction implies that the 

laminar shear stress  along the lower interface amust equal exactly the control volume weight force 

component along the inclined plane: 

  sin)yd(LgL  

where L is the control volume length. It yields: 

  sin)yd(g  

(b) The pressure distribution is derived from the application of the momentum principle along the y-direction 

implying that the pressure force acting along the lower interface must equal the weight must equal exactly 

the control volume weight force component along the y-direction: 

  cos)yd(LgLP  

This gives the classical result in an open channel flow with hydrostatic pressure: 

  cos)yd(gP  
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(c) In a laminar force, the shear stress is proportional to the shear rate: 

 
y

Vx




  

From the result derived in (a), the velocity distribution is: 

 





 





2

y
dy

sing
Vx  

Since the boundary shear stress equals the fluid shear stress at y = 0, and introducing the shear velocity, the 

velocity distribution may be rewritten in dimensionless terms as: 

 














d2

y
1

d

ydsing

V

V 3

*

x  

 

Exercise No. 10 

The frequency of oscillation between a circular cylinder follows approximately the following relationship: 

 





 




Re

20
12.0

V

D
St

o

shedding  for 100 < Re < 105 

where D is the cylinder diameter, Vo is the approach flow velocity and Re is the Reynolds number. Estimate 

the vortex shedding frequency of a 10 mm wire in a 35 m/s wind flow. 

 

Solution 

Re = 21.400; St = 0.1998; shedding = 700 Hz 

 

Exercise No. 11 

We consider a developing laminar boundary layer along a 1-m long 0.5 m wide flat plate. The upstream 

velocity profile is uniform. The velocity profile in the laminar boundary layer may be approximated by the 

following expression: 

 










y
csinbaVx  for 0  c×y/  /2 

(1) Based upon the momentum integral principle, derive the expression of the velocity profile. 

(2) Give the expression of the boundary layer thickness, displacement thickness, momentum thickness, bed 

shear stress and total shear force as function of the distance x from the plate leading edge. 

(3) Compare the above results with the Blasius solution. 

(4) Application to a bentonite suspension 

(4.1) Plot the longitudinal distribution of boundary shear stress along the plate. Include the Blasius solution 

for comparison. 

(4.2) Calculate the friction force on the plate. 

The bentonite suspension properties are:  = 1,115 kg/m3,  = 0.19 Pa.s, mass concentration: 17%. The 

free-stream velocity is: Vo = 0.10 m/s. 
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Mathematical Aids 

 )x2sin(
4

1
xsinx

2

1
dx)xcos1(xcos   

 xcos
2

1
xsindx)xsin1(xcos 2  

 xcos)2x(cos
2

1
dx)xcos1(xsin   

 ))x2sin(
4

1
xcosx

2

1
dx)xsin1(xsin   

 

Solution 

The velocity distribution may be rewritten as: 

 













y

2
sinVV ox  

The application of the momentum integral principle yields: 

 
xRe

x
795.4   

 
x

2
Re

x
6551.0   

 
x2

o

o

Re

6551.0

V
2

1





 

 
L2

o

L

0

o

Re

31.1

LV
2

1





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Chapter II-4 

Exercise No. 1 

A turbulent boundary layer develops over the Moreton Bay as a result of 35 m/s wind storm. 

(a) Assuming a zero pressure gradient, predict the atmospheric boundary layer thickness, the displacement 

thickness and the momentum thickness at 1 and 5 km from the inception of the wind storm. 

(b) Plot on graph paper the vertical distribution of the longitudinal velocity. 

(c) Calculate the friction force per unit width on the 5 km long water-boundary layer interface. 

Assuming that the water free-surface is equivalent to a smooth boundary. 

 

Solutions 

(a) Turbulent boundary layer calculations since Rex > 1 E+9 
x (m) = 1000 5000
 (m) = 4.89 17.73
1 (m) = 0.61 2.21
2 (m) = 0.48 1.73

(c) Fshear/B = 2500 N/m 

 

Exercise No. 2 

A gust storm develops in a narrow, funnel shaped valley. The free-stream wind speed is 15 m/s at the start of 

that valley and it reaches 25 m/s at 5 km inside the valley. 

(a) Calculate the atmospheric boundary layer growth in the first 5 km of the valley. Assume that the 

boundary layer growth to initiate of the start of valley. 

(b) Plot the longitudinal profile of the boundary layer thickness. 

 

Comment: Assuming a linear increase in free-stream velocity and a smooth boundary, the momentum 

integral equation is applied. The velocity distribution is assumed to be a 1/7 power law (smooth turbulent 

flow). A numerical integration of Equation (4-7) with a spreadsheet may be compared with the analytical 

solutions for a developing boundary layer on a smooth plate with Vo = 15 & 25 m/s. At the beginning of the 

valley, the numerical solution must be close to that of a developing boundary layer solution for Vo = 15 m/s. 
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Exercise No. 3 

Turbulent velocity measurements were conducted in a developing boundary layer above a rough surface. The 

results at x = 0.98 m are listed below. 

 
y 

Vx


 vx2
/Vx


 

mm m/s  
2 6.76 19.0 
3 7.11 18.1 
4 7.48 17.0 
5 7.79 16.2 
6 8.03 15.8 
7 8.30 15.4 
8 8.49 15.1 
9 8.72 14.4 

10 8.91 14.1 
15 9.70 12.8 
20 10.16 13.2 
25 10.44 12.5 
30 10.53 11.8 
40 10.71 11.1 
50 10.76 10.5 
60 10.81 10.5 
80 10.90 9.3 

100 11.0 9.2 
150 11.07 8.5 
200 11.1 7.9 
280 11.02 7.3 

 

(a) Plot the vertical distribution of time-averaged velocity and turbulence intensity. 

(b) Calculate the boundary layer thickness, the displacement thickness and the momentum thickness. 

(c) Deduce the boundary shear stress and shear velocity from the best fit with the law of the wall (i.e. log-

law). 

(d) From the best fir with the law of the wall, deduced the value of the constant D2 and the equivalent 

roughness height of the plate rugosity. 

The test were performed in an environmental wind tunnel at atmospheric pressure and ambient temperature. 

 

Solutions: 

The analysis of the velocity profile yields: 
Vo = 11.05 m/s 
 = 87.4 mm 
 = 6.85 mm 
 = 4.99 mm 

Since the velocity profile was measured above a rough plate, the data are compared with Equation (4-20). 

The slope of the curve Vx/V* = f(Ln(yV*/)) equals 1/ where  = 0.4 for V* = 0.60 m/s (o = 0.43 Pa). A 

comparison between the data and Equation (4-20) gives ks = 0.8 mm. 
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Exercise No. 4 

In a water tunnel, turbulent velocity distributions were conducted in a developing boundary layer along a flat 

plate in absence of pressure gradient. 

 
y 

Vx


 Vx


 Vx


 

mm m/s m/s m/s 
x (m) = 0.25 0.50 0.75 

0.5 5.57 5.04 5.34 
1 6.03 5.36 5.52 
2 6.10 6.57 6.19 

3.5 7.30 6.75 5.79 
6 8.00 7.09 6.30 
8 7.80 7.20 6.83 

10.2 7.70 7.52 7.07 
14 7.54 7.61 7.20 
18 7.65 8.37 7.38 
21 7.68 7.56 8.07 
35 7.54 7.67 7.62 
41 7.69 7.70 7.51 
58 7.60 7.69 7.56 

60.5 7.67 7.62 7.62 
66 7.60 7.70 7.68 
70 7.67 7.70 7.60 
90 7.56 7.62 7.69 

100 7.70 7.63 7.58 

 

(a) Plot the vertical distributions of velocity. 

(b) Calculate the boundary layer thickness, displacement thickness and momentum thickness at x = 0.25 m, 

0.5 m and 0.75 m. 

(c) Using the momentum integral equation, calculate (c1) the boundary shear stress distribution along the 

plate and (c2) the total force acting on the 0.75 m, 0.5 m wide plate. 

 

Solutions: 
x = m 0.25 0.5 0.75 
Vo = m/s 7.72 7.7 7.71 
 = mm 5.55 14.26 19.55 
1 = mm 0.764 1.695 2.759 
2 = mm 0.488 1.190 2.0340 

The total shear force acting on the 1 m long, 0.5 m wide plate is about 0.9 N. 

 

Exercise No. 5 

Let us consider an outfall in the sea. The turbulent water jet is issued from a rectangular nozzle (0.1 m by 2 

m). The jet velocity at the nozzle is 2.1 m/s. At the distance x = 0.3 m and 3.5 m, calculate velocity 

distributions. Plot your results in graph paper. 

For seawater, the fluid density, dynamic viscosity and surface tension are respectively:  = 1024 kg/3,  = 

1.22 E-3 Pa.s, and  = 0.076 N/m (Pacifc Ocean waters off Japan). 
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Assume a plane jet (opening 0.1 m) with a width of 2 m. 

 

Comment: At x/D = 3, the jet is not fully-developed. There is an ideal-fluid flow core with V(y=0) = Vo and 

two developing free shear layers. At x/D = 35, the jet flow is fully-developed and the centreline velocity 

equals V(y=0) = 0.95 m/s. 

 

Exercise No. 6 

A thin plate (0.7 m wide by 2 m long) is towed through water at a velocity of 1.1 m/s. Calculate the drag 

force on both sides of the submerged plate assuming that (a) the boundary layer remains laminar, and (b) the 

boundary layer becomes turbulent at the leading edge. 

 

Solution 

The Reynolds number defined in terms of the plate length equals: ReL = 2.2 E+6. The boundary layer flow 

at the end of the plate would be expected to be turbulent. 

 Laminar boundary layer Turbulent boundary layer 

 (m) at x = 2 m 0.0066 0.040 

Total drag force (N) = 1.5 6.6 

Note: The total drag equals the force on both sides of the submerged plate 

 

Exercise No. 7 

Considering a wind turbine (Fig. E4-2), the power taken from the wind, assuming no energy losses, is: 

 Power  =  2    R2    V3    (1 - )2 

where R is the turbine radius,  is the air density, V is the mean wind speed and  is the interference factor 

(Fig. E4-2A). As the wind passes through the turbine, it is decelerated down to V(1-) at the turbine disk. 

The efficiency of the wind turbine is: 

   =  4    (1 - )2 

(a) Calculate the maximum efficiency. 

(b) A wind turbine is located at 9.4 km from the coastline. The rotor diameter is 45 m. Assuming that the 

free-surface-stream velocity is 12 m/s, and that the boundary layer develops at the shoreline, calculate the 

optimum mast elevation to take 900 kW from the wind. 

Assume maximum wind turbine efficiency. Assume the main wind direction perpendicular to the coastline. 
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Fig. E4-2 - Wind turbines 

(A) Control volume and definition sketch of the wind flow pas a turbine 

 

 

(B) Wind turbines in Plouarzel (France) on 1 March 2004 -The wind farm consists of 5 wind turbines of 750 

kW - The wind farm is located 2.6 km from the coastline and each mast is 38.4 m high 

 

 

Solution 

(a)  = 0.593 for  = 1/3 

(b) y = 30 m (calculations performed assuming a smooth turbulent boundary layer and a 1/7-th power law 

velocity distribution). 

Note the approximate nature of the calculations since the velocity distribution is not uniform. 

 

Note: See the movies 'Old windmill' and 'Wind farm operation' in the textbook on pages 382 and 385 

respectively. 
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Exercise No. 8 

Considering a turbulent free-shear layer (Fig. 4-14), obtain an expression of the variation of the shear stress 

across the shear layer. Assume the mixing length hypothesis. 

 

Comments 

The mixing length hypothesis assumes that the momentum exchange coefficient satisfies: 

 T  =  lm
2  

 Vx
y

  

where lm is the mixing length. The turbulent shear stress equals hence: 

   =    T  





 Vx

y
  =    lm

2   





 Vx

y

2

  

 

Exercise No. 9 

Considering a two-dimensional turbulent jet, give the expression of the discharge of entrained fluid in the jet 

flow. Compare the result with a two-dimensional laminar jet. 

 

Comment 

Let us remember that the discharge of entrained fluid in the jet flow per unit width equals: 

 
Q
B  =  

y=- 

 +
Vx  dy  

Physically, the jet entrains some surrounding fluid as momentum is exchanged from the high-velocity region 

to the surrounding fluid at rest. The volume discharge Q increases with increasing longitudinal distance x. 

 

Exercise No. 10 

The nozzle of a ventilation duct is placed 12 m above the floor of a sport hall and it is directed vertically 

downward. The outlet discharges 45 m3/minute. Calculate the diameter of the nozzle if the maximum 

permissible velocity at a height of 1.5 m above the floor is 1.3 m/s? 

 

Solution 

For a circular jet, the length of the developing flow region is about 5 to 10D where D is the jet diameter. 

Let us assume a conservative estimate: 10D. For x > 10D, the jet flow is full-developed and the maximum 

velocity is on the jet centreline (Eq. (4-35)). 

The basic equations are: 

 Q  =  Vo  

4 D2 Continuity equation 
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Vmax

Vo
 = 

5.745
x
D

 Centreline velocity,  x/D > 10  (4-35b) 

where x = 10.5 m, Q = 45 m3/minute (0.75 m3/s) and Vmax = 1.3 m/s. 

The results yield: D = 0.402 m. Let us verify that x > 10D: x/D = 26.1. Note the calculations are based upon 

the assumption that the floor has little effect on the jet flow at 1.5 m above it. 

 

Comment 

In the fully-developed flow region of circular jet, the jet centreline velocity decreases as 1/x (Table 4-2). 

Another reasoning may be based upon the following considerations: 

 Q  =  Vo  

4 D2 Continuity equation 

 
Vmax

Vo
 =  

10  D
x  Centreline velocity,  x/D > 10  (4-35) 

This simple approximation gives: 

 Q  =  Vmax  
x

10  

4 D 

where x = 10.5 m, Q = 45 m3/minute (0.75 m3/s) and Vmax = 1.3 m/s. It yields: D = 0.7 m. Note the 

difference with the earlier result which was based upon Equation (4-35). Which one would you choose to be 

conservative? 

 

Exercise No. 11 

A Pitot-Prandtl-Preston tube may be used to determine the shear stress at a wall in a turbulent boundary 

layer. The tube is in contact with the wall and the shear stress is read from a calibration curve between the 

velocity head and the boundary shear stress. On the basis of the velocity distribution in the inner wall region, 

justify the Pitot-Prandtl-Preston tube's method. 

 

Ref: textbook p. 322 

 

Solution 

When a Pitot tube is lying on the wall, it measures the velocity Vx at a distance yo from the wall equal to half 

the Pitot tube outer diameter. Assuming that the Pitot tube is within the inner wall layer, the time-averaged 

longitudinal velocity satisfies: 

 
Vx
V*

  =    
V*  yo

  (4-12b) 

Replacing the shear velocity V* by its expression in terms of the boundary shear stress o, it becomes: 

 o  =    
Vx
yo
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Practically, Pitot-Prandtl-Preston tubes may be also used in the wall region and in rough turbulent boundary 

layer with appropriate calibration. 

 

Exercise No. 12 

A 2 m long 1.5 m wide flat plate is placed in a water tunnel. The plate acts as a splitter (Fig. E4-3) and the 

flow is symmetrical around both sides of the plate. Detailed velocity measurements were conducted in the 

developing boundary layer and the data analysis yields the following velocity profiles: 

x = 0.8 m V = 14.98  (y/0.021)0.161 y < 0.021 m 

 V = 14.98 m/s y > 0.021 m 

x = 2 m V = 15.01  (y/0.036)0.154 y < 0.036 m 

 V = 15.01 m/s y > 0.036 m 

(a) Calculate the boundary shear stress at x = 1.4 m. 

(b) Calculate the total drag force on the plate. 

 

Fig. E4-3 - Developing boundary layers on a splitter plate - Note that the boundary layers around the plate 

are not drawn to scale: the vertical scale is enlarged 

 

 

Solution 

The flow is turbulent since ReL = 3 E+7. 

The velocity distributions at x = 0.8 and 2 m follow a power law: 

 
Vx
Vo

  =  


y


1/N
 (4-21) 

Hence the displacement thickness and the momentum thickness are: 

 
1
   =  

1
1 + N  

 
2
   =  

N
(1 + N)  (2 + N)

  

Using the integral momentum equation: 
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 o  =    







Vo
2  

 2
x

  +  Vo  
 Vo
x

  (2  2  +  1)  (4-4) 

the boundary shear stress equals 857 P and 119 Pa at x = 0.4 and 1.4 m respectively. The total drag force on 

the plate equals 2.5 kN. 

Note that x = 0,  = 1 = 2 = 0. 

 

Exercise No. 13 

Velocity measurements in a developing, turbulent boundary layer along a smooth flat plate yield the data set 

given in the table below. 

(a) On graph paper, plot Ln(Vx) versus Ln(y) at x = 0.4 m. 

(b) Estimate the shear velocity and the boundary shear stress at x = 0.4 m. 

(c) Using the momentum integral equation, calculate the boundary shear stress and shear force between x = 

0.4 and 0.6 m. Compare your results with the shear velocity estimate and the Blasius formula for smooth 

turbulent flows. Discuss your findings. 

The fluid is air at 25 Celsius and standard pressure. 

 
x y Vx vx' 

mm mm m/s m/s 
400 2 8.111 1.33 

 4 8.859 1.362 
 6 9.68 1.502 
 8 10.283 1.476 
 10 10.714 1.297 
 15 10.756 1.366 
 20 10.77 1.426 
 30 10.8 1.286 
 40 10.799 1.301 
 50 10.9 1.03 
 70 10.789 0.965 
 90 10.98 1.037 
 110 10.81 0.923 
 130 10.78 0.919 

600 2 8.591 1.159 
 4 8.508 1.342 
 6 9.392 1.249 
 8 10.241 1.184 
 10 10.327 1.448 
 15 10.814 1.368 
 20 11.12 1.341 
 30 11.23 1.301 
 40 11.157 1.102 
 50 11.162 1.168 
 70 11.219 0.943 
 90 11.239 0.969 
 110 11.186 1.056 
 130 11.359 0.927 

 

Solution 

At x = 0.400 m: 
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 o = 0.32 Pa Log law 

 o = 0.34 Pa Blasius formula 

Between x = 0.400 m and 0.600 m: 

 o = 0.43 Pa Momentum integral equation 

Overall the results are close. 

 

Exercise No. 14 

The nozzle of a ventilation duct is placed 9.5 m above the floor of the hydraulic laboratory and it is directed 

vertically downward. The outlet discharges 2,300 m3/hour. 

(a) For a circular duct, calculate the diameter of the nozzle if the maximum permissible velocity at a height 

of 1.5 m above the floor is 0.95 m/s? 

(b) An alternative design uses a wide rectangular duct (10 m long), calculate the opening of the nozzle if the 

maximum permissible velocity at a height of 1.5 m above the floor is (b1) 0.95 m/s and (b2) 0.50 m/s ? 

Discuss your results. 

Assume a quasi-two-dimensional flow pattern. 

The fluid is air at 28 Celsius and standard pressure. 

 

Solution 

(a) D = 0.615 m (Circular jet) 

(b) D = 0.004 m & 0.0145 m (Two-dimensional nozzle) 

A velocity of 0.95 m/s is relatively fast and may induce unpleasant working conditions in the hydraulics 

laboratory. The preferred design option would be a 0.0145 m thick slot. 

 

 

Notes 

See a number of relevant movies in the textbook (pp. 379-386). 
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Revision exercise 

A large towing tank facility is used to conduct drag tests on a 1:40 scale model of a submerged freighter to 

be used for trans-oceanic shipping (Fig. R-1). The maximum speed of the prototype is expected to be 54 

knots. Since it is impossible to achieve simultaneously both Froude and Reynolds similitudes, the tests are 

conducted at identical Froude number. The magnitude of the corrected surface drag for the prototype will be 

deduced by means of the boundary layer equations. 

The prototype freighter has a total length of 140 m, a length of 32 m at the waterline, and a wetted area of 

5,100 m2. What would be the total drag on the prototype at maximum speed, if the corresponding model 

drag is 95 N. 

For seawater, the fluid density, dynamic viscosity and surface tension are respectively:  = 1024 kg/m3,  = 

1.22 E-3 Pa.s, and  = 0.076 N/m. 

The hydraulic model tests are conducted in freshwater. 

 

Fig. R-1 - Photograph of the 1:40 scale model of a submerged freighter tested at Hiroshima University in 

2001 

 

 

Solution: Surface resistance force = 9.3 E+5 N in prototype; Total drag force = 2.7 E+6 N. 

Check the required thrust power = 76 MW (prototype freighter). 

Remember: Thrust power = Force  V 

 


