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Abstract Dam-break flood waves are associated with major environmental disasters

provoked by the sudden release of water stored in reservoirs. Ritter found in 1892 an

analytical solution to the wave structure of an ideal fluid released during an instantaneous

dam failure, propagating over initially dry horizontal terrain. This solution, though ideal,

hence frictionless, is widely used to test numerical solutions of the Shallow Water

Equations (SWE), and as educational tool in courses of fluid mechanics, given that it is a

peculiar case of the Riemann problem. However, the real wave structure observed

experimentally differs in a major portion of the wave profile, including the positive and

negative fronts. Given the importance of an accurate prediction of the dam break wave, the

positive and negative wave portions originating from the breaking of a dam with initially

dry land on the tailwater reach are revisited in this work. First, the propagation features of

the dry-front are investigated using an analytical boundary-layer type model (Whitham/

Dressler/Chanson model) constructed matching an (outer) inviscid dynamic wave to an

(inner) viscous diffusive wave. The analytical solution is evaluated using an accurate

numerical solution of the SWE produced using the MUSCL-Hancock finite-volume

method, which is tested independently obtaining the solution based on the discontinuous

Galerkin finite-element method. The propagation features of the negative wave are poorly

reproduced by the SWE during the initial stages of dam break flows, and, thus, are then

investigated using the Serre–Green–Naghdi equations for weakly-dispersive fully non-

linear water waves, which are solved using a finite volume-finite difference scheme.
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1 Introduction

The sudden release of the water stored in a reservoir due to an instantaneous dam collapse

can lead to serious environmental problems in the downstream valley, risk to human life,

and severe economical damage. Thus, dam-break flows are a major concern in hydraulic

and environmental engineering practice [1]. The hydraulic prediction of the wave resulting

from the breaking of a dam gained impulse during the World War II, given the risk of dam

destruction by military action [2]. In modern times, it is a major disaster linked to un-

frequent engineering failure (Fig. 1a), but the hydraulic phenomenon is basically the same

occurring in canals during the sudden gate operation [3, 4]. The dam break flood wave after

the instantaneous failure of a dam propagates along natural waterways involving uneven

beds, non-prismatic cross sections, and wet-dry fonts [5] (Fig. 1b). These problems are

efficiently tackled using modern shock-capturing methods for the solution of the shallow-

water flow equations. However, before attempting to solve real-life problems, where there

is a need to deal with the peculiar constraints imposed by nature, it is an accepted practice

to check numerical models using simple, idealized test cases. It cannot be expected to solve

with any accuracy a complex real flow problem if a simplified and ideal test is not

adequately addressed by a numerical model. In this context, Ritter’s ideal dry-bed dam

break solution for a rectangular and horizontal channel (see ‘‘Appendix 2’’) [6] is still

today, after more than a century, a tool of wide use by modelers [5, 7]. It is also a very

important material for teaching purposes in undergraduate courses of hydraulics and fluid

mechanics [1, 3].

The shallow-water flow equations, or Saint-Venant equations are, for a frictionless and

horizontal channel of prismatic and rectangular cross-section [1, 3, 8]
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Fig. 1 a Example of instantaneous dam break: the St Francis dam, USA (Courtesy of Santa ClaritaValley
Historical Society)—Looking upstream at the dam wall ruins, b experimental test of dam break wave, where
the turbulence at the dry-bed front is visible
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Here h is the water depth, U the depth-averaged velocity positive downstream in the x-

direction, t is the time, x the horizontal coordinate with x = 0 at the dam wall, and g the

gravitational acceleration.

Equations (1)–(2) are obtained from the Euler equations assuming that the vertical

accelerations can be neglected, and that the velocity profile in the x-direction is uniform

across the water layer of thickness h [1, 5]. Ritter’s solution to Eqs. (1)–(2) for the

instantaneous failure of a dam is (Fig. 2a)

h ¼ 1

9g
2 ghoð Þ1=2� x

t

h i2
; ð3Þ

U ¼ 2

3

x

t
þ ghoð Þ1=2

h i
; ð4Þ

with ho as the water depth in the reservoir at the initiation of the dam collapse. The

idealized solution given by Eqs. (3)–(4) is widely used to check numerical solutions of

Eqs. (1)–(2). Further, in the context of fluid dynamics, it is a particular case of the Riemann

problem, with the state-vector at one side of the discontinuity implying dry-bed conditions,

and a motionless state at the other side of the interface [5, 9]. It is well-known based on a

generalized solution of the Riemann problem that Ritter’s solution is a particular rar-

efaction wave. The solution involves a similarity structure of the (h, U) predictors,

depending solely on the coordinate (x/t). The wave structure includes a positive dry-bed

Fig. 2 Instantaneous dam-break flow a Ritter’s idealized wave, b real wave structure observed
experimentally [10]
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front propagating at speed 2(gho)
1/2, and a negative front spreading back at rate -(gho)

1/2

over the still water (Fig. 2a) (see Jain [3] or Toro [5] for detailed derivations). We denote

as the positive wave the portion of the solution for any x[ 0 and t[ 0, with the dam axis

located at x = 0. Likewise, the negative wave is the solution at coordinate points x\ 0 for

any time. The propagation speed of the positive and negative wave fronts is information of

particular interest for natural hazard assessment and planning for an eventual evacuation of

population from the tailwater reach of a river.

However, detailed experimental observations [10, 17] indicated a number of features

not accounted for by Ritter’s idealized wave structure. In particular, Ritter’s prediction of

the propagation speeds of the waves is not accurate. Near the front of the positive wave, the

frictional resistance and turbulence dominates the flow [11–14] (see Fig. 1b), and cannot

be ignored. As result of these real fluid flow features, the free surface profile in the ‘‘tip-

portion’’ of the positive wave changes its curvature from the positive values indicated by

the parabolic-law by Ritter [see Eq. (3)] to negative values [10, 14, 15] (see Fig. 2b).

Consequently, the positive front propagates much slower than predicted by Ritter’s theory

[10]. Given the importance of flow resistance on the positive wave propagation, more

advanced solutions were attempted in the literature to overcome the limitations of Ritter’s

theory. The effect of flow resistance on the dam break wave was considered analytically by

Dressler [11], Whitham [12], and Chanson [14]. Chanson [14] expanded Whitham’s [12]

conceptual model which is based on the assumption that near the positive front the

resistance forces are exactly balanced by pressure forces, and flow accelerations are

therefore ignored. This simplified solution at the tip portion is then matched to the inviscid

dynamic wave model, corresponding to Ritter’s solution, away front the front. The result is

a simplified analytical solution of Saint-Venant equations, much in the sense of boundary-

layer methods, where an outer (inviscid dynamic wave) and inner (viscous diffusive wave)

solutions are matched. This conceptual model was compared with experiments, and a fair

agreement was noted [14]. It was recently compared with 3D computational results based

on the RANS equations [16]. This model is a simplified analytical solution of the Saint

Venant equations, and, thus, it is of interest to compare it with the general solution of the

Saint Venant equations. Given that an exact analytical solution of Saint Venant equations

for the dam break wave with boundary friction is so far unknown, it is necessary to

compare Whitham’s boundary layer type conceptual model with the numerical solution of

the Saint Venant equations for the viscous dynamic wave.

As regards to the negative wave, Dressler [17] and Lauber [10] found experimentally

that the negative front propagates much faster than predicted by Ritter’s theory, with a free

surface profile implying strong negative curvatures, and largely deviating from a parabolic

shape, during the initial instants following the instantaneous dam break. Dressler [17] and

Lauber and Hager [15] linked these strong differences to the existence of severe vertical

accelerations. To date, this hypothesis was not verified, except in the near-vicinity of the

wall [4]. In order to account for these features, it is necessary to introduce vertical

accelerations and non-hydrostatic pressures in a depth-averaged model via use of the

vertical momentum balance [18, 19]. However, the negative front propagation celerity

remains so far un-analyzed by using a depth-averaged flow model including vertical

accelerations.

Given the conceptual importance of Ritter’s dam break idealized structure, the need to

predict accurately the positive and negative front propagation, and the discrepancies

observed experimentally, the specific objectives of this work are:
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1. Testing the Whitham/Dressler/Chanson [11, 12, 14] conceptual model for the dry-bed

dam break flow problem. To address this objective, the comparison of this simplified

analytical model with the full solution of Saint-Venant equations, is conducted. For

this task, two accurate numerical solutions of the Saint-Venant equations are produced

for reference, using the MUSCL-Hancock finite volume method, and the discontinuous

Galerkin finite element method.

2. Detailing the rarefaction wave propagation by including vertical accelerations in a

depth-averaged model. To address this objective, vertical accelerations are accounted

for by using the Serre–Green–Naghdi equations for weakly-dispersive and fully non-

linear water waves, which are a generalization of Saint-Venant equations. The

equations are solved by using a hybrid finite volume-finite difference model.

These objectives are systematically developed in the next sections.

2 Shallow flow approximations

2.1 Dynamic wave with friction effects

A detailed solution of the viscous dynamic wave model is necessary to test the approximate

analytical solution composed of a diffusive wave model matched to a inviscid dynamic

wave, corresponding to Ritter’s model [14]. In this section, two independent numerical

models were implement to produce an accurate reference solution of Saint Venant equa-

tions with friction effects.

2.1.1 Finite volume method

Equations (1)–(2) are written in conservative vector form, including the flow resistance

force, as [5]

oU

ot
þ oF

ox
¼ S: ð5Þ

Here U is the vector of conserved variables, F is the flux vector and S the source term

vector, given by

U ¼ h

hU

� �
; F ¼ q

F

� �
¼

hU
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2
gh2

" #
; S ¼ 0

�ghSf

� �
: ð6Þ

Shock capturing finite volume solutions of Eq. (6) using the Godunov upwind method,

assisted by robust Riemann solvers (approximate or exact), produce accurate solutions of

shallow-water flows [5, 20]. The integral form of Eq. (6) over a control volume in the x-t

plane is [5, 9]

ZtþDt

t
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xi�1=2
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Zxiþ1=2
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Sdxdt: ð7Þ

To solve Eq. (7) a splitting approach is used. First, the inviscid flow problem, corre-

sponding to the integral solution of the homogeneous system
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¼ 0; ð8Þ

is tackled. For a rectangular control volume in the x-t plane, Eq. (7) reads [5]

~U
kþ1

i ¼ Uk
i �

Dt
Dx

Fiþ1=2 � Fi�1=2

� �
; ð9Þ

which is used to update the vector U. Here Dt and Dx are the step sizes in the x and t axes,

respectively, k refers to the time level, i is the cell index in the x-direction, and Fi?1/2 is the

numerical flux crossing the interface between cells i and i ? 1 (Fig. 3). In this work the

MUSCL-Hancock method is used to solve Eq. (9) [5, 9], which is second-order accurate in

both space and time. The solution process starts with the cell-averaged values of conserved

variables at time level k, Ui
k. For second order space accuracy, a piecewise linear recon-

struction is conducted within each cell [5] (Fig. 3). Linear slopes resulting from the

reconstructed solution must be limited to avoid spurious oscillations near discontinuities.

Let letters L and R denote the reconstructed variables at the left and right sides of a cell

interface, the resulting values of U at each of its sides are

UL

iþ1=2
¼ Uk

i þ
1

2
Uþ

i�1=2
Uk

i � Uk
i�1

� �
; UR

iþ1=2
¼ Uk

iþ1 �
1

2
U�

iþ3=2
Uk

iþ2 � Uk
iþ1

� �
; ð10Þ

with Uþ
i�1=2

and U�
iþ3=2

as diagonal limiter matrices [5]. The Minmod limiter is used in this

work. In the MUSCL-Hancock method, an evolution of boundary extrapolated values UL
iþ1=2

and UR
iþ1=2

at interface i ? 1/2 over half the time step is conducted to regain second order

accuracy in time. Based on a Taylor series expansion in space and time, interface values

are then given by [5]

U
L

iþ1=2
¼ UL

iþ1=2
� Dt
2Dx

F UL

iþ1=2

� �
� F UR

i�1=2

� �h i
;

U
R

iþ1=2
¼ UR

iþ1=2
� Dt
2Dx

F UL

iþ3=2

� �
� F UR

iþ1=2

� �h i
:

ð11Þ

Fig. 3 Finite volume discretization
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With these evolved boundary extrapolated variables U
L

iþ1=2
and U

R

iþ1=2
defining states L

and R, the numerical flux is computed using the HLL approximate Riemann solver as [5]

Fiþ1=2 ¼
FL

SRFL � SLFR þ SRSL UR � ULð Þ
SR � SL

FR

8><
>:

;
if

if

if

SL � 0

SL � 0� SR
SR � 0

ð12Þ

Here FL and FR are the fluxes computed at states L and R. Robust wave speeds estimates

SL and SR for a wet bed are given by [5]

SL ¼ UL � aLqL; SR ¼ UR þ aRqR; ð13Þ

where a = (gh)1/2, and qK(K = L, R) is

q
K
¼

1

2

h�ðh� þ hKÞ
h2K

� 	� �1=2
h� [ hK

1 h� � hK

8<
: ð14Þ

The flow depth at the star region of the Riemann problem at each interface h* is [5]

h� ¼
1

g

1

2
aL þ aRð Þ þ 1

4
UL � URð Þ

� 	2

: ð15Þ

For the dry-bed problem, the celerity of the signals are given by

SL ¼ UR � 2aR if hL ¼ 0ð Þ; SR ¼ UL þ 2aL if hR ¼ 0ð Þ: ð16Þ

Once Eq. (9) is applied, the effect of the source terms is introduced by solving the ODE

[5]

dU

dt
¼ S: ð17Þ

Given that the only source term in Eq. (17) is the resistance force appearing in the

momentum equation, it is reduced to the scalar ODE

dq

dt
¼ � f

8
U2; ð18Þ

where f is the Darcy-Weisbach friction factor. Equation (18) is discretized implicitly,

resulting in the algebraic expression

Ukþ1
i ¼ ~qki

hkþ1
i

� Dt
f

8hkþ1
i

Ukþ1
i

� �2
: ð19Þ

Equation (19) is a quadratic equation that is solved each time step to obtain the cell-

averaged velocity Ui
k?1 accounting for the friction effects. In this work, a threshold value

of 10-8 m is used to identify dry cells. If the water depth is negative at a cell after the

evolution of conserved variables, the vector U is set to zero. If the water depth falls below

the threshold value, the velocity is set to zero. For stability in time of the explicit scheme,

the Courant–Friedrichs–Lewy number CFL must be less than unity [5]. Given the value of

CFL, Dt is determined at time level k from
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Dt ¼ CFL
Dx

max Uk
i þ ghkið Þ1=2










2
64

3
75: ð20Þ

In Fig. 4 the experiments by Schoklitsch [21] for a dam break wave in a dry, rectan-

gular, horizontal flume are considered as test case. The flume is 0.093 m in width, 0.08 m

in height, and 20 m in length. The dam was located at coordinate x = 10 m, and the

removal was considered instantaneous. The tailwater portion of the flume was initially dry,

and the water depth in the dam 0.074 m. Experimental measurements conducted by

Schoklitsch [21] for two times after removal of the dam, namely t = 3.75 s and t = 9.4 s,

are plotted in Fig. 4a and b, respectively. The predictions using the finite volume model

were conducted adopting f = 0.03 [14], resulting in a good agreement with observations,

as depicted in Fig. 4. The numerical solution was conducted using 700 cells and

Fig. 4 Dry-bed dam break wave test case: comparison of computed and measured [21] instantaneous free
surface profiles
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CFL = 0.1 to produce accurate results, despite stable results were feasible with CFL = 0.9

and half of the cells. The effect of flow resistance in this test was significant, as observed

from the deviation of Ritter’s solution in the same figure.

2.1.2 Discontinuous Galerkin finite element method

An alternative solution to the dynamic wave model may be developed using the discon-

tinuous Galerkin method (DGM) [7, 22]. The computational domain is divided in a number

of finite elements, and the value of U at the common interface of two adjacent elements is

allowed to be discontinuous (Fig. 5a). Within a generic element ‘‘e’’ the solution U(x, t) is

approximated by the interpolation function

U x; tð Þ � Û ¼
X2
j¼1

Nj xð ÞUj tð Þ; ð21Þ

where Uj are the nodal values of U at the boundaries of each element (j = 1 for left node

and j = 2 for right node). At a node, shared by two adjacent elements, U has two different

values at its left- and right-sides. Basically, this produces a number of local Riemann

problems at the interfaces of elements. The shape functions Nj(x) are, in local normalized

coordinates n of an element (Fig. 5b),

N1 ¼ 0:5 1� nð Þ; N2 ¼ 0:5 1þ nð Þ: ð22Þ

In the discontinuous Galerkin method, the test functions are taken equal to the shape or

interpolating functions. Thus, Eq. (5) is multiplied by Ni (with i = 1 and 2), and integrated

oven an element, resulting [7]

Fig. 5 Finite element discretization
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Zxeþ1=2
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oU

ot
dxþ
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Ni

oF

ox
dx ¼

Zxeþ1=2

xe�1=2

NiSdx: ð23Þ

Integrating Eq. (23) by parts, and substituting the predictor of U(x, t) within the ele-

ment, given by Eq. (21), produces [7]

Zxeþ1=2

xe�1=2

Ni

X2
j¼1

Nj

oUj

ot

" #
dxþ Ni Feþ1=2 � Fe�1=2

� �
�

Zxeþ1=2

xe�1=2

oNi

ox
F̂dx ¼

Zxeþ1=2

xe�1=2

NiŜdx; ð24Þ

where

F Uð Þ � F̂ Uð Þ ¼ F Û
� �

; S Uð Þ � Ŝ Uð Þ ¼ S Û
� �

: ð25Þ

Equation (24) is the basic relation of the DGM. Equation (24) yields for the discretized

continuity equation a system of two equations to determine the evolution of the water

depths (h1, h2) at each node of the element, namely [7]

Dx
2=6 1=6
1=6 2=6

� �
o

ot

h1
h2

� �
þ �qe�1=2

qeþ1=2

� �
� �0:5 �0:5

0:5 0:5

� �
q1
q2

� �
¼ 0

0

� �
: ð26Þ

Likewise, from Eq. (24) the evolution of discharge at the nodes of the element (q1, q2) is

given by the system [7]

Dx
2=6 1=6
1=6 2=6

� �
o

ot

q1
q2

� �
þ �Fe�1=2

Feþ1=2

� �
�

Z1

�1

oNi

on
F̂dn ¼ �Dx

2

Z1

�1

NigĥŜf dn; ð27Þ

where the integrals were transformed from the global x-coordinate to the local element

coordinate n [7].

The numerical flux Fe?1/2 at the common interface of two adjacent finite elements

(Fig. 5a) is computed solving a local Riemann problem by using the HLL approximate

Riemann solver, already described for the finite volume solver. The slope of the solution

within an element, determined by the actual values of U1 and U2, must be limited to avoid

unphysical oscillations near shocks, but preserving the corresponding element-averaged

values [7]. Here, the minmod limiter is used. The space integrals are evaluated by a two-

point Gaussian quadrature formula, using the identities stated in Eq. (25). A friction factor

f = 0.03 is used in the simulations. Once numerical fluxes at element boundaries and space

integrals along the element are evaluated, based on the known information at the actual

time level k, Eqs. (26) and (27) are used to evolve in time h1, h2, q1 and q2 by resort to a

one-step forward Euler method.

The solution for the dam break propagation on a dry bed previously presented in Fig. 4

is further considered in Fig. 6, where the results of the DGM, produced using 700 elements

and CFL = 0.1, are compared with the former results of the finite volume method, for both

h(x, t) and q(x, t). For the DGM, the maximum CFL for stability is 1/3 [7]. To have a

meaningful comparison of the DGM method and the finite volume method, both models

are solved with identical CFL and spatial divisions of the domain, therefore. It can be

observed that results of both techniques are in excellent agreement. It is not claimed that

the discontinuous Galerkin method is more precise than the MUSCL-Hancock finite
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volume method, or vice-versa; Simply, two accurate methods to solve the Saint-Venant

equations are used in this work to produce a solution to a problem where an exact ana-

lytical solution is unknown, namely the viscous dam break wave. Both methods excellently

agree, thereby confirming the accuracy of the numerical solution produced. Such high

quality reference solution is necessary to undertake a precise evaluation of the simplified

analytical solution based on the Whitham/Dressler/Chanson boundary-layer type concep-

tual model [11, 12, 14]. Given that both numerical solutions excellently agree, in the rest of

the work only the results corresponding to the finite volume method are presented.

2.2 Boundary-layer analytical solution

Whitham, Dressler and Chanson [11, 12, 14] conceptualized the computation of the dam

break flow over a dry bed using boundary layer arguments. Near the dry bed front, they

argued that frictional resistance controls the motion, which is assumed to be not acceler-

ated. Then, of necessity, an exact balancing of friction and hydrostatic forces must be

preserved. Basically, these are the conditions of the so-called diffusive wave, obtained

from the momentum balance contained in Eq. (5) as

Fig. 6 Comparison of finite volume method and DGM for the viscous dam break wave
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oh

ox
¼ � f

8

U2

gh
: ð28Þ

At an undermined point away from the dry-bed front, frictional forces are negligible, but

accelerations (local and convective) are then significant. The conceptual model proposed

was therefore made up of a composite wave solution matching Eq. (28) to Ritter’s solution

for the inviscid dynamic wave. The matching point is determined forcing conservation of

the water volume initially at rest in the reservoir [14]. This model was briefly presented by

Dressler [17] and extensively developed by Chanson [14]. As additional hypothesis, it was

assumed that the velocity in the tip wave portion is not largely varying in space, that is,

U(x, t) & UF(t), which is, thus, the dry-front celerity. Analytical integration of Eq. (28)

between an arbitrary point and the dry-front, where x = xF and h = 0, produce [12, 14, 17]

h x; tð Þ ¼ � f

4

U2
F

g
xF � xð Þ

� �1=2
: ð29Þ

Curiously, we remark here that Whitham [12] discarded Eq. (29), which he considered

inaccurate without giving evidence. However, both Dressler [17] and Chanson [14] found

elements in favor of it. Thus, a detailed comparison of this simplified analytical solution

with the detailed numerical solution of Saint-Venant equations is presented as follows. The

dimensionless dry-front celerity is given, based on mass conservation, by the identity [14]

8

3

1

f

1� 1
2
h

� �3
h

¼ T ; ð30Þ

where the normalized time is T = t(g/ho)
1/2 and the dimensionless front celerity is h = UF/

(gho)
1/2. Equation (30) gives the function h = h(T) upon numerical solution. The assem-

bling point xe of the inner (viscous diffusive wave) and outer (inviscid dynamic wave)

solutions is given by [14]

Xe ¼
3

2
h� 1

� 	
T ; ð31Þ

where Xe = xe/ho, and the dry-front position is [14]

XF ¼ 3

2
h� 1

� 	
T þ 4

fh2
1� 1

2
h

� 	4

: ð32Þ

The free surface profile up- and downstream of xe is determined from Eqs. (3) and (29),

respectively. Likewise, upstream of xe the velocity profile is given by Ritter’s Eq. (4),

reaching the constant value UF along the tip portion.

Computations using the analytical model were conducted as follows. First, Eq. (30) was

numerically solved for a given instant T using a Newton–Raphson algorithm [23] to get the

corresponding value of h. Second, Eqs. (31) and (32) were used to determine the bound-

aries of the tip portion, where Eq. (29) gives the free surface profile. Upstream from xe
Ritter’s solution was applied. The finite volume numerical results previously presented in

Fig. 4 for t = 9.4 s are plotted again in Fig. 7 to evaluate the analytical results.

The analytical solution for the water depth, velocity and discharge is presented in the

same figure. It can be observed that the analytical water depth prediction is very close to

the numerical solution (Fig. 7a), despite the visible slope break at the assembling point of
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the inviscid dynamic wave and the viscous diffusive wave. Velocity profiles are compared

in Fig. 7b. As expected, the constant velocity profile in the tip portion is only an

approximation, given that the numerically-computed velocity profiles also increase in this

domain, in agreement with Lauber’s [10] experimental observations. However, the dry-bed

front position is adequately predicted by the analytical model (Fig. 7b), giving evidence of

Fig. 7 Comparison of the numerical solution of the dynamic wave with the simplified boundary-layer type
analytical solution
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the accuracy of the dry-front celerity prediction. The numerical and analytical discharges

are compared in Fig. 7c, where a fair agreement is noted. Notably, the approximation of

the velocity profile in the tip zone provokes some deviations from the numerical solution,

but, overall, the simplified analytical solution gives a reasonable estimate of the

discharge.

The momentum balance written in primitive or non-conservative variables (h, U) is

[5, 14]

oU

ot
þ U

oU

ox
þ g

oh

ox
þ gSf ¼ 0: ð33Þ

The terms with spatial derivatives in Eq. (33) were discretized using second-order

accurate central finite differences, and the time derivative using a forward finite difference.

The discretized derivatives were evaluated using the numerical solution produced using the

finite-volume method. The results are displayed in Fig. 8. The numerically-computed local

and convective accelerations are compared with those obtainable from Ritter’s inviscid

solution, namely,

Fig. 8 Momentum balance terms along the viscous dam break wave (dam wall coordinate at x = 10 m)
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oU

ot
¼ � 2

3

x

t2
; ð34Þ

and

U
oU

ox
¼ 4

9t
ghoð Þ1=2þ x

t

h i
; ð35Þ

respectively. Further, the pressure force gradient was also determined from the inviscid

solution, resulting

g
oh

ox
¼ � 2

9t
2 ghoð Þ1=2� x

t

h i
: ð36Þ

A fact that deserves consideration on inspecting Eqs. (34)–(36) is that the local

acceleration exactly balances the sum of the convective acceleration plus the pressure force

gradient. It implies that the unsteady dam break wave is largely governed by local

acceleration effects, a matter rarely emphasized. It is instructive to look how the flow

resistance modifies this structure existing in the inviscid dynamic wave. As revealed in

Fig. 8, away from the tip portion the inviscid dynamic wave is a very good approximation.

Local and convective accelerations are little affected by friction (Fig. 8a, b). Approaching

the dry-bed front, the friction force increases, as also does the pressure force gradient given

that the water surface slope becomes steeper (Fig. 8c, d). According to Whitham [12], one

would expect an exact balancing of the pressure and resistance forces. As indicated by the

numerical results in Fig. 8e, this is in fact a very good approximation, but not exact;

convective accelerations can be ignored near the dry front, but the magnitude of qU/qt,
tough small, cannot be ignored at first glance. Its magnitude near the dry front is about 15%

of the resistive force. However, despite the diffusive wave assumption is not exactly

verified, the water surface predictions of this model are in fact very good.

3 Wave solution accounting for vertical accelerations

In this section the viscous dam break wave is simulated using a depth-averaged model

where the vertical acceleration effects are introduced, namely the Serre–Green–Nagdhi

equations.

3.1 Serre–Green–Naghdi equations for fully non-linear and weakly dispersive
water waves

Serre [24] derived equations for weakly-dispersive, fully non-linear water waves by depth-

averaging of the mass and momentum conservation equations, resulting the system

oh

ot
þ o Uhð Þ

ox
¼ 0; ð37Þ
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o Uhð Þ
ot

þ o

ox
g
h2

2
þ U2hþ U2

x � UUxx � Uxt

� � h3
3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Effect of vertical acceleration
for an inviscid fluid

2
66664

3
77775
¼ �ghSf : ð38Þ

To obtain these equations, Serre [24] assumed that the velocity in the x-direction is

uniform with depth and equal to its depth-averaged value U = q/h. The compatible vertical

velocity component resulted to be linearly distributed with depth. By introducing these

velocity components in an inviscid vertical momentum balance, obtained from the cor-

responding Euler equation, the effect of the vertical acceleration was accounted for into the

depth-averaged x-momentum balance [see term under-braced in Eq. (38), where Ux = qU/
qx, Uxx = q2U/qx2 and Uxt = q2U/qxqt]. Equation (38) was obtained by Shu and Gardner

[25] and Green and Naghdi [26, 27] by applying the irrotational flow theory. The system is

called the Serre–Green–Naghdi equations in coastal engineering, despite in civil and

environmental engineering these are named as Serre equations [28], or simply Boussinesq

equations [29]. These equations are discussed in depth by Barthelemy [30], Cienfuegos

et al. [31], Dias and Milewski [32], and Bonneton et al. [33], where numerical solutions of

coastal engineering problems are addressed, including solitary wave propagation. Castro-

Orgaz and Chanson [34] applied the steady-state version of Eqs. (37)–(38) to model near-

critical flows, like undular hydraulic jumps. Here, we focus on their application to Ritter’s

dam break problem.

For a dam break wave propagating over an initially wet bed, the inviscid acceleration

term introduced into Eq. (38) produces undulations in the shock front [28, 29, 35, 36].

These undulations are not attenuated as the wave evolves in time, given that a drawback of

Eq. (38) is that wave breaking and turbulence effects are not accounted for. It is well-

known experimentally that undulations on the shock are formed if the ratio of downstream

to upstream initial water depths in the dam is above 0.4 [35, 36]. For smaller ratios,

turbulence produce wave breaking and the undulations are progressively suppressed, until

no wave trains are finally observed for a dry-bed dam break flow wave. Vertical accel-

erations are very strong at the initial stages of dam break waves [13, 37, 38], but turbulence

and wave breaking are dominant features [13]. If dam break wave simulations are con-

ducted using Eqs. (37)–(38), undulations at the shock front generated by the inviscid

acceleration term are produced even for ratios of tailwater to upstream depth below 0.4.

Thus, for a realistic prediction of dam break waves based on Eqs. (37)–(38) turbulence

effects must be accounted for. Hosoda and Tada [39] and Hosoda et al. [40] proposed a

simple correction to Eq. (38), where turbulence effects are accounted for introducing a

damping factor e as

o Uhð Þ
ot

þ o

ox
g
h2

2
þ U2hþ e U2

x � UUxx � Uxt

� � h3
3

� �
¼ �ghSf : ð39Þ

This parameter is used to model the turbulence reduction of the inviscid vertical

acceleration effects in the x-momentum balance. The parametrization proposed by Hosoda

and Tada [39] is based on the assumption that if the non-hydrostatic inviscid terms are not

important, then the results from the Serre equations should collapse with those from the

Saint-Venant equations. Basically, it implies that under the action of turbulence the vertical

momentum balance of an inviscid fluid is damped, approaching a hydrostatic vertical

momentum balance as turbulence intensity increases. Thus, the energy dissipation due to
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wave breaking is assumed to be adequately accounted for by the Rankine–Hugoniot jump

conditions across moving shocks [5, 41]. Hosoda and Tada [39] and Hosoda et al. [40]

proposed a damping factor e that gradually attenuates the non-hydrostatic term under the

action of turbulence using the solitary wave as conceptual model (‘‘Appendix 1’’). If a

branch of the solitary wave profile is assumed to describe the first wave of an undular

shock front, wave breaking of a solitary wave may be linked to the wave breaking at the

undular shock. Based on undular bore experimental data, the limiting supercritical Froude

number for wave breaking of an undular shock is adopted to be F1 = 1.25 [39, 40]. Thus, if

the solitary wave breaks at this value of F1, the maximum water surface slope on the

upstream branch of the solitary wave profile is located at the inflection point, with a value,

upon using the solitary wave profile function [40],

oh

ox











cr

¼ 0:225: ð40Þ

This slope is adopted as a threshold value above which wave breaking occurs due to the

action of turbulence. Hosoda and Tada [39] proposed the factor e

e ¼ exp �1
oh

ox










�

oh

ox











cr

� 	� �
if

oh

ox










[

oh

ox











cr

1 else

8<
: ; ð41Þ

that gradually introduces the damping effect of turbulence on the vertical acceleration,

depending on the local free surface slope. Comparison with laboratory data of undular

hydraulic jumps indicates a calibration parameter 1 = 2 [39]. The friction slope Sf is

determined using Darcy–Weisbach equation.

3.2 Computation of the wave profile

The system of Eqs. (37) and (39) is solved here using a finite volume-finite difference

method. Boussinesq-type water wave propagation models are extensively solved in the

coastal engineering literature using 4th-order accurate schemes in space and time [31, 41–44].

The reason underlying this practice is that truncation errors originating from the discretization

to second-order accuracy of Saint-Venant type leading terms can induce numerical disper-

sion. This problem is serious for large scale simulations using sparse time-space meshes [42].

However, if a fine mesh is used in second-order accurate schemes this effect disappears,

rendering the model a simple and useful tool. It is not infrequent to find unsteady non-

hydrostatic models solved using second-order accurate schemes [19, 39, 45, 46], or even of

first-order [47], producing very good results. For the basic test cases conducted here, a

second-order accurate model in space and time was implemented based on the previously

describedMUSCL-Hancock scheme. After somemathematical manipulation, using Eq. (37)

and treating e as independent of x, Eq. (39) can be rewritten in the convenient form

o

ot
Uh� o

ox
eUx

h3

3

� 	� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
collected term for time�stepping

þ o

ox
g
h2

2
þ U2h

� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Saint�Venant flux term

¼ � ghSf|ffl{zffl}
flow resistance term

þ o

ox
e UUxx � U2

x

� � h3
3
þ eUxqxh

2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
non�hydrostatic source term

ð42Þ

where all time derivatives are collected in a single time-stepping term, and convective

contributions originating from non-hydrostatic pressures are treated as a source term. Thus,

the one-dimensional system of conservation laws to be solved is
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þ oF

ox
¼ Z, ð43Þ

where

W ¼
h

r

� �
¼

h

hU � e
h3

3
Uxx � eh2hxUx

2
4

3
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o

ox
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2

� �
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4
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0

�ghSf þ X

� �
:

ð44Þ

The solution of Eq. (43) was conducted using a finite volume-finite difference method

as follows. First, using known values of the variables (h, q) at time level k, the numerical

flux Fi?1/2 was determined as previously described using the MUSCL-Hancock method

with the HLL approximate Riemann solver. This step is identical to the solution of Saint-

Venant equations, therefore. Once this computation is done, the water depths at the new

time level k ? 1 are from the finite-volume conservative formula

hkþ1
i ¼ hki �

Dt
Dx

qiþ1=2 � qi�1=2

� �
; ð45Þ

where Dt is determined using Eq. (20). This value of the water depth is then used to

evaluate the source term Z; the auxiliary variable r at the new time level is then from the

finite-volume method

rkþ1
i ¼ rki �

Dt
Dx

Fiþ1=2 � Fi�1=2

� �
� Dtghkþ1

i Sf qki ; h
kþ1
i

� �
þ DtX qki ; h

kþ1
i

� �
: ð46Þ

The spatial derivatives in the source term X are approximated using second-order

central finite differences. Once the values of r are determined at each finite-volume for the

new time level, the following elliptic problem is stated at each cell of the computational

domain

rkþ1
i ¼ hkþ1

i Ukþ1
i � eki

h3

3

o2U

ox2

� 	kþ1

i

�eki h2
oh

ox

oU

ox

� 	kþ1

i

: ð47Þ

The space derivatives in Eq. (47) are discretized using second-order central finite dif-

ferences, and the value of ei
k is determined using Eq. (41). Equation (47) produces an

algebraical relation containing the unknown values of the velocity at the new time level for

the 3 surrounding cells i-1, i and i ? 1. Equation (47) for all i-cells are assembled,

producing a tridiagonal system of equations, that is easily solved using the Thomas

algorithm [23]. Once the velocity Ui
k?1 is determined, the cell-averaged discharge qi

k?1 is

evaluated.

The prediction of the time evolution of the wave profile using the Serre equations is

compared in Fig. 9 with the experimental measurements by Ozmen-Cagatay and Kocaman

[48] at different normalized times T since the gate opening. In these experiments, the gate

opening time was between 0.6 and 0.8 s based on image-processing work, and it is con-

sidered in fact an instantaneous opening, therefore. The shape of the dam break wave

curves presented in Fig. 9 are very similar to those previously measured by Dressler [17].

The upstream water depth in the experiments by Ozmen-Cagatay and Kocaman [48] was
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Fig. 9 Comparison of computed
(Serre equations) and measured
[48] wave profiles
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ho = 0.25 m. For the simulation 1300 cells and CFL = 0.1 were used, with a constant

friction factor f = 0.015. It can be observed that the prediction based upon the Serre

equations is in good agreement with observations even for very small times since the gate

opening, e.g. T = 1.13. For reference, the same experiments are plotted in Fig. 10 and

compared with the parabolic prediction by Ritter [6]. It can be observed that the parabolic

shape predicted by Ritter [6] is not in agreement with observations, even for the quite large

time T = 6.64. At this time, the positive wave is in fair agreement with data, but the

negative wave is clearly not.

The Serre equations solver was run setting e = 0 using identical physical and numerical

conditions and the results are displayed in Fig. 10. This is the solution of a dynamic wave

with friction, which is in excellent agreement with Ritter’s solution, but, as expected,

deviates from physical data.

Notably, none of the wave fronts are correctly predicted by Ritter’s approach. In

contrast, the Serre equations does a good work tracking the position of the dry and negative

wave fronts for all T. Further, Serre equations correctly predict the shape of the rarefaction

wave, implying negative free surface curvature, e.g. q2h/qx2\ 0. Thus, the Serre equations

produce an improved wave profile prediction as compared to Ritter’s parabolic profile,

including the tracking of the wave fronts.

The celerity of the negative wave predicted by the Serre–Green–Naghdi equations is

larger than the theoretical value (gho)
1/2 predicted by the Saint-Venant equations during the

initial instants. This is directly linked to the existence of non-zero vertical acceleration. At

later times, however, the celerity of the negative wave decreases toward the asymptotic

value predicted by the Saint-Venant equations. This was clearly shown in the recent

experiments of Leng and Chanson [49] (Fig. 6 in this paper), as well in the earlier data of

Lauber [10].

The present results should be considered an evidence in favour of adopting the Serre

equations in wave propagation problems frequently occurring in civil and environmental

engineering. These equations are in fact widely used in coastal engineering and can be

extended to other areas of water research, as suggested here. The present results are not

intended to diminish the importance of Ritter’s analytical solution: it is a very important

tool to check numerical solutions of Saint-Venant equations, and a master development for

teaching purposes in courses of hydraulics and fluid mechanics. The original result of

Ritter [6], given by Eqs. (3) and (4), is widely known in the literature. The result can be

easily check by substitution in Eqs. (1) and (2), and details of the solution process using the

method of characteristics can be found in Stoker [50], Jain [3] or Chanson [1]. However, it

is less known that in the final part of his paper Ritter [6] acknowledged that his theoretical

result was not in agreement with experiments. In fact, he made a sketch of the ‘‘real’’ wave

profile similar to those presented with the results of Serre [24] equations in Fig. 9,

implying a negative curvature, contrary to the parabolic profile (see ‘‘Appendix 2’’).

A second set of simulations was considered for comparison purposes with the experi-

mental data of Lauber [10]. While analyzing these experiments it was noted that the gate

pull-up motion had a significant effect on the numerical simulations for this dataset. This

fact was previously reported by Shigematsu et al. [13], whom conducted numerical sim-

ulations using a 2D RANS model, and found that the inclusion of the gate opening

movement greatly improved the agreement of numerical computations and their own

experimental observations. In his experimental set up, Lauber [10] stated that the upward

gate motion was conducted with a vertical acceleration up to 4g. Using this acceleration,

and neglecting resistance forces in the gate mechanism, the gate opening time can be easily

determined to be tgate = [ho/(2g)]
1/2. For Lauber’s experiments ho = 0.3 m, resulting
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Fig. 10 Comparison of
analytical solution [6], numerical
solution of the shallow-water
equations (SWE, e = 0) and
measured [48] wave profiles
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tgate & 0.13 s, or Tgate & 0.743. Clearly, this value cannot be neglected for simulations

during the early stages of dam break flows, e.g. for T = 2.86. Our findings are in agree-

ment with Shigematsu et al. [13], whom determined an empirical gate opening time law for

their experiments, which is in fair agreement with the current estimation for tgate. Fol-

lowing Shigematsu et al. [13], an approximate method to account for the effect of the gate

opening time on numerical simulations was devised here. The gate opening effect was

approximately accounted for considering an instantaneous opening in the numerical model,

but starting once the gate was fully removed for the channel. Therefore, a time-lag equal to

tgate was introduced in the numerical simulations. This approximate method was found to

produce a significant improvement in the agreement between numerical predictions and

Fig. 11 Comparison of computed (Serre equations) and measured [10] wave profiles
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observations. The predicted wave profiles using 1300 cells and CFL = 0.1 are compared

with observations in Fig. 11, resulting a good agreement.

The prediction of the positive and negative wave fronts using the Serre equations is

compared in Fig. 12 with measurements by Lauber [10], resulting a good agreement. The

gate opening time was again considered as a lag-time for comparative purposes. The edge

of the rarefaction wave was defined for practical purposes as the point where h = 0.995ho,

given that the slope of the computed wave tends asymptotically to zero near the negative

front. Prediction of both fronts using Ritter’s theory is also included in the same figure for

reference. It can be observed that Ritter’s theory overestimated the dry-front position, as

previously described [10, 14, 17]. The main physical mechanism from which these dis-

crepancies originate is the friction force at the bed. Computations of the dry-front using

Saint-Venant equations produce an almost identical prediction (Fig. 13), confirming that

vertical accelerations are not relevant there. The computed edge of the rarefaction wave

using Saint-Venant equations is very close to Ritter’s. It clearly indicates that friction

effects are really negligible there, but vertical accelerations are very important, as con-

firmed by the good match found using Serre equations in Fig. 12.

Finally, the prediction of the dry front using the analytical boundary-layer model

[12, 14] is compared in Fig. 14 with experiments [10], resulting a good agreement.

Comparison of simulations using Saint-Venant equations and the Serre–Green–Nagdhi

equations indicated that, for engineering purposes, vertical acceleration effects can be

neglected for T[ 40. A prominent example where this occurs was already presented in

Fig. 4, where the experiments by Schoklitsch [21] are analyzed for t = 3.75 s (T = 43.17)

and t = 9.4 s (T = 108.23). Therefore, long-time simulations of dam break waves can be

conducted based on the Saint-Venant equations, but for the initial stage of dam break.

During the very initial instants of the dam break waves, vertical accelerations might be as

important as turbulence and bed friction, and cannot be ignored. It is of interest to remark

that, in an earlier development by Pohle [51], a two-dimensional solution for Ritter’s dam

break problem, incorporating thus vertical accelerations, was obtained by formulating the

Euler equations in a Lagrangian framework. Using series expansions of time for the

particle displacements, and resorting to methods of conformal mapping, a parametric

solution for the dam break curves was obtained. This solution is however limited to very

small times, e.g. T\ 0.7, and implies a pure vertical motion of the free surface points on

Fig. 12 Comparison of
computed wave fronts using
Serre equations and Ritter [6]
analytical solution with measured
data [10]
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the negative wave. Dressler [17] found that Pohle’s solution was not in very good

agreement with his experimental observations. In contrast, the approximate depth-averaged

model used here based on the Serre–Green–Nagdhi equations can be applied for T[ 0.7; it

was found to be in good agreement with observations, and it implies only a moderate

increase in numerical complexities, as compared to Saint-Venant based models.

4 Conclusions

In this work Ritter’s dam-break flow over a dry-bed was revisited, and the following

conclusions were obtained:

Fig. 13 Comparison of
computed wave fronts using
Saint-Venant equations and
Ritter [6] analytical solution with
measured data [10]

Fig. 14 Comparison of computed dry fronts using the boundary-layer model [12, 14] and Ritter [6]
analytical solution with measured data [10]
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Two accurate solutions of the viscous dam break wave propagating over a dry-bed were

produced using the MUSCL-Hancock finite-volume method and the discontinuous

Galerkin finite-element method. Both techniques produced results in excellent agreement.

Using this reference numerical solution for the dynamic wave, the Whitham/Dressler/

Chanson boundary-layer type conceptual model [11, 12, 14], based on a matching of

Ritter’s inviscid dynamic wave with a viscous diffusive wave, was established to be a good

approximation. It confirms that it is a relevant generalization of Ritter’s ideal wave

structure. The prediction of the dry-bed front based on the Saint-Venant equations, which

rely on the hydrostatic pressure distribution, was found to be good.

The negative wave propagation was however not correctly predicted by the Saint-

Venant equations during the initial stages of dam-break waves. Simulations conducted

using the Serre–Green–Naghdi equations for fully non-linear and weakly dispersive water

waves produces a wave structure in very good agreement with observations; the celerity of

the negative wave was much faster than that indicated by Ritter’s solution, during the

initial instants. The position of the negative wave leading edge was accurately predicted,

and the shape of the negative wave, which is not parabolic, was accurately reproduced. In

contrast, neither Ritter’s analytical solution, nor the numerical solution of Saint-Venant

equations, were able to mimic the negative wave features, during the initial instants fol-

lowing a dam break.

It is suggested based on the current results that the numerical solution of Saint-Venant

equations, and the Whitham/Dressler/Chanson analytical model as a simplification, can

produce a reasonable prediction of dam break waves if the positive wave is the main

concern, or for long-time simulations. If both wave fronts need to be tracked then the

Serre–Green–Naghdi equations produce results as good of that of Saint-Venant equations

for the positive wave, plus an accurate negative wave not reproduced by the latter system.

The positive wave front advancing over the initially dry land is governed by friction,

whereas the propagation of the water drop upwards in the dam reservoir is controlled by a

non-hydrostatic wave motion.

Appendix 1: damping model for dispersive terms in Serre–Green–Naghdi
equations

Current parametrizations of wave breaking are based on the assumption that the energy

dissipation is adequately accounted for by the Rankine–Hugoniot jump conditions of

shocks [52–54]. Therefore, a Boussinesq ? Saint Venant matching approach is adopted.

Basically, the wave profile is computed solving the Boussinesq-type equations and, after

each time step, a wave breaking criteria is checked in the computational domain. In those

cells marked as breaking, the dispersive terms are switched off (equivalent to setting

e = 0), and the SWE are solved there. Other wave-breaking models can be adopted, like

the classical diffusive model extensively validated by Cienfuegos et al. [55] or the recent

development by Tissier et al. [56]. The wave breaking model proposed by Hosoda and

Tada [39] and Hosoda et al. [40], is, however, less known, despite its simplicity and good

performance. The idea behind this parametrization is identical to that developed by Tonelli

and Petti [41] in the sense that Boussinesq equations are ‘‘substituted’’ by the SWE at

breaking cells. However, rather that producing a full (sharp) transition from Boussinesq to

the SWE at breaking nodes, they proposed a gradual damping of the dispersive terms when

the threshold criteria of wave breaking is exceeded. The method is as simple to implement
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as that of Tonelli and Petti [41], and permits a very stable behavior of the numerical

computations. Below, the physical background of the method is explained.

The idea is to attenuate the dispersive terms of the Serre–Green–Naghdi equations if the

local free surface slope exceeds a threshold value. To produce a gradual damping of

dispersive terms Hosoda and Tada [39] and Hosoda et al. [40] proposed an exponential

attenuation given by

e ¼ exp �1
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A calibration parameter 1 is introduced, and (qh/qx)cr is the threshold value of the free

surface slope above which wave breaking is initiated. This value was determined using the

solitary wave as conceptual model, given that it is a particular solution of the Serre–Green–

Naghdi equations. The solitary wave profile (Fig. 15a) is given by [24]

h

h1
¼ 1þ F21 � 1

� �
sech2

3F21 � 3
� �1=2

F1

x

2h1

" #
; ð49Þ

where h1 is the undisturbed water depth and F1 the corresponding Froude number. The

question is then: What is the maximum value of the free surface slope in a solitary wave for

incipient wave breaking? Successive differentiation of Eq. (49) produces

Fig. 15 a Solitary wave profile,
b evolution of damping factor in
test of Fig. 9
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oh

ox
¼ Bsech2 Axð Þ tanh Axð Þ; o2h

ox2
¼ ABsech2 Axð Þ sech2 Axð Þ � 2 tanh2 Axð Þ

� 

; ð50Þ

where

A ¼
3F21 � 3
� �1=2

2h1F1
;B ¼ � F21 � 1

� � 3F21 � 3
� �1=2

F1
: ð51Þ

The maximum free surface slope occurs at the inflection point I in Fig. 15a. Thus,

setting q2h/qx2 = 0 results in

xI ¼
ln 2� 31=2
� �

2A
; ð52Þ

and, using this value of the x-coordinate, the free surface slope at the inflection point is

oh

ox

� 	

max

¼ B
12 5=3ð Þ � 31=2

� 


3� 31=2ð Þ3
: ð53Þ

Based on undular bore experimental data of Favre waves, the limiting supercritical

Froude number for wave breaking F1 = 1.25 was adopted [39, 40]. Thus, from Eq. (53)

results

oh

ox











cr

¼ 0:225: ð54Þ

This slope is adopted as a threshold value above which wave breaking occurs due to the

action of turbulence.

To illustrate the performance of Eq. (48), the test case presented in Fig. 9 is recon-

sidered in Fig. 15b, where e = e(x/ho) is plotted at T = 1.13 and 2.76. Note the low value

of e just after the dam break, given that the damping model is activated by the upstream

vertical water depth just as soon as computations are initiated. Its action is gradually

reduced in magnitude and spatial extension as the wave evolves, given the reduction of the

free surface slopes. For the remaining computational snapshots presented in Fig. 9 (e.g.

T = 3.88, 5.01 and 6.64) the damping model is never activated (e = 1).

Appendix 2: Ritter’s original work

In this appendix we reprint two original figures from Ritter [6], given their interest for

educational purposes. In Fig. 16 we observe the original parabolic profile sketched by

Ritter. The quantity (ga)1/2 is denoted by Uo, and the celerity of the dry and backward

fronts are clearly indicated. The initial water depth in the dam is a, and the critical water

depth at the dam axis is (4/9)a.

Ritter [6] noted that his parabolic profile was not in agreement with observations, and

sketched a more realistic shape for the dam break curve, where all the profile has negative

curvatures, as seen in Fig. 17.
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9. Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics: a practical introduction.

Springer, Berlin
10. Lauber G (1997) Experimente zur talsperrenbruchwelle im glatten geneigten Rechteckkanal, VAW-

ETH. Ph.D Thesis, Zürich
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