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The writers thank the discussers for their interest in the original
paper, and the comments offered. During the inspection of the
discussers’ assertions, it was found that most of them were
unsupported by hydraulic analysis. Detailed replies to each
comment are given, with bullet points used to differentiate between
specific items to be presented.

General

• First, it is clarified here that, contrary to the discussers’ opening
statements, the original paper explored the validity of the steady
backwater equation, or gradually varied flow equation, at the
critical depth. The validity of the equation was checked using
an unsteady mathematical model, namely the Saint Venant equa-
tions, aswell as through the experiments. The backwater equation
is obtained by simplifying the differential form of Saint Venant
equations to steady-state conditions (Montes 1998), namely

dh
dx

¼ − dzb
dx ðxÞ

1 − q2

gh3ðxÞ
¼ − dzb

dx

1 − F2
ð1Þ

where h = flow depth; q = discharge; and zb ¼ zbðxÞ = bottom
profile. Comparison of the solution the backwater equation with
the solution of the integral form of Saint Venant equations, after
establishment of a steady state, gave identical results (Fig. 3 of the
original paper). Comparison of Saint Venant equations with
experimental data in Fig. 5(b) of the original paper gave good
results. The analytical solution for the free surface slope at the
critical point is

�
dh
dx

�
c
¼ �

�
− hc

3

∂2zb
∂x2

�
1=2

ð2Þ

This equation was compared and verified with the experi-
ments of Wilkinson (1974) in Fig. 4 of the original paper.
Using the unsteady-flow results from Saint Venant equations,
the free surface slope at a section was computed from the
finite-difference approximation

∂h
∂x ðx; tÞ ≈

hiþ1ðtÞ − hi−1ðtÞ
2Δx

ð3Þ
At the weir crest (x ¼ 0), it was found that the steady-state

free surface slope obtained from the unsteady solution of
Saint-Venant equation perfectly matched Eq. (2), e.g.,

∂h
∂x ð0; tÞ

����
t→∞

→ −
�
− 1

3

�
q2

g

�
1=3 ∂2zb

∂x2
�
1=2

crest
ð4Þ

This result was also included in Fig. 4 of the original paper.
Therefore, the validity of the steady-state equations (backwater
equation and singular point equation) was verified in the origi-
nal paper, using both general unsteady mathematical solutions,
and laboratory observations. To clearly highlight this fact, the
computed free-surface profile using Eq. (1), obtained from
the Runge-Kutta method, is presented in Fig. 1(a) [Fig. 5(b)
of the original paper]. The boundary condition at the weir crest
section, x ¼ 0, is hð0Þ ¼ hc ¼ ðq2=gÞ1=3. The free surface slope
at that section is given by Eq. (2). Subcritical and supercritical
profiles were computed from x ¼ 0 in the upstream and down-
stream directions, respectively. Fig. 1(a) reveals that the accu-
racy of the computation is good. That the Saint Venant theory is
mathematically valid at the critical depth means that for the weir
flow case investigated in the original paper, mathematical solu-
tions are obtained for arbitrary values of Emin=R. Consequently,
limits to the theory should be set based on experimental obser-
vations. This was accomplished in the original paper on the ba-
sis of the computation presented in Fig. 5(b) [current Fig. 1(a)].
The mathematical prediction based on the backwater equation is
good if the curvature is small, as in Fig. 1(a), where Emin=R ¼
0.253. The experimental verification of Eq. (2) is presented
in the current Fig. 1(b), based on Fig. 4 of the original paper.
This analytical solution is seen to be in excellent agreement
with experiments up to −hcd2zbðxÞ=dx2 ≈ 0.15, or Emin=R ≈
3=2 · 0.15 ¼ 0.225. Therefore, the solution of the backwater
Eq. (1), including Eq. (2), are in full agreement with the more
general solution of Saint Venant equations, and these solutions
are verified to be physically good if the curvature is small,
e.g., for Emin=R < 0.25.

• For steady, frictionless flow over a weir, Eq. (1) is equivalent to
the differential form of

H ¼ zb þ hþ q2

2gh2
¼ const ð5Þ

It means that, based on Eq. (5), smooth mathematical solu-
tions for transcritical flow over a weir are obtained [Fig. 1(a)].
Eq. (1) is consistent with the formation of steady singular points,
asymptotically, during an unsteady flow computation based on
the Saint Venant equations

∂U
∂t þ

∂F
∂x ¼ S ð6Þ

where U = vector of conserved variables; F = flux vector; and
S = source term vector, given by

U ¼
�

h

hU

�
; F ¼

� hU

hU2 þ 1
2
gh2

�
;

S ¼
�

0

ghð− ∂zb∂x − SfÞ

�
ð7Þ

where U = depth-averaged velocity. Results in Figs. 3 and 4 of
the original paper indicated that both results almost perfectly
match, thereby indicating that the unsteady flow over a weir
produces a singular point asymptotically in the crest section
as the steady state is approached.
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• The discussers used the terminology Singular Point Theory,
which is not adequate as such a theory does not exist, but rather
the Singular Point Method, the term used by the writers in the
original paper and by Chow (1959, pp. 237–242), among others.
The singular point method is a mathematical technique used to
solve indeterminations in ordinary differential equations. There-
fore, it is a mathematical method that can be applied to different
theories. It is a very common tool in applied mathematics
(e.g., von Kármán and Biot 1940) used to model dynamic
systems in physics and engineering.

• The normal depth concept is not used in the original paper, gi-
ven that flow over a weir crest can be considered a potential
flow, as verified experimentally (Montes 1998).

• Broad-crested weirs are not considered in the original paper,
contrary to what the discussers suggested. The writers consid-
ered flow over a weir crest, where zbðxÞ, dzbðxÞ=dx and
d2zbðxÞ=dx2 are smooth and continuous.

• In their experimental setup (Fig. 1 of in the discussion), the
discussers found various singular points. To determine the ac-
tual flow profile, subcritical and supercritical profiles are com-
puted from each singular point. Between each pair of singular
points, a supercritical flow profile computed from the singular
point upstream must be part of an ensemble with a subcritical
flow profile computed from the singular point downstream,
studying the formation of a hydraulic jump. If a jump is formed,
both singular points acts as controls. If a jump is not formed,
only one singular point will be an active control section, and
the profile between the two singular points will be fully subcri-
tical or supercritical. A characteristic feature of a singular point
is the possibility of transcritical flow profiles across them, when
it acts as a control, and the variety of profiles in its vicinity, not

crossing it. The number of possible cases is long, and there is no
space for a detailed description in this closure, but interested
readers are referred to the work of Iwasa (1958).

Hydrostatic Modeling

• The discussers assert that “there is no reason for both numerator
and denominator, each different functions of x and h, going to
zero at the same point in (x; h) space,” with reference to the sin-
gular point of Eq. (1). Mathematical proof is given as follows.
Let Eq. (1) be written in the alternative form

dzb
dx

þ dh
dx

�
1 − q2

gh3

�
¼ 0 ð8Þ

Define the function I of (x, h) space as

Iðx; hÞ ¼ dzb
dx

þ dh
dx

ð1 − F2Þ ð9Þ

Any point of the (x, h) space that produces the following
identity:

Iðx; hÞ≡ 0 ð10Þ
is by definition a solution of the ordinary differential equation
(ODE) given by Eq. (8). Now, consider a point x ¼ xo where
dzbðxÞ=dx ¼ 0. Solutions of the ODE at this point must verify,
therefore, the identity

Iðxo; hÞ ¼
dh
dx

ð1 − F2Þ≡ 0 ð11Þ

Based on Eq. (11), the following solutions (S1, S2, S3) are
possible at x ¼ xo:

dh
dx

¼ 0; F ≠ 1 → S1

dh
dx

≠ 0; F ¼ 1 → S2

dh
dx

¼ 0; F ¼ 1 → S3 ð12Þ

The three solutions given in Eq. (12) are mathematically
possible, but the physical implication of each one is unclear.
To depict physically what each mathematical statement in
Eq. (12) indicates, Eq. (8) is differentiated with respect to x
to get

d2zb
dx2

þ d2h
dx2

�
1 − q2

gh3

�
þ
�
dh
dx

�
2 3q2

gh4
¼ 0 ð13Þ

There is nothing assumed to get Eq. (13), as only a
differential of Eq. (8) was determined. Now, conditions given
by each solution (S1, S2, S3) in Eq. (12) are complemented with
the application of Eq. (13) to yield

S1 ⇒
dh
dx

¼ 0; F ≠ 1;
d2zb
dx2

þ d2h
dx2

�
1 − q2

gh3

�
¼ 0

S2 ⇒
dh
dx

≠ 0; F ¼ 1;
d2zb
dx2

þ
�
dh
dx

�
2 3q2

gh4
¼ 0

S3 ⇒
dh
dx

¼ 0; F ¼ 1;
d2zb
dx2

¼ 0 ð14Þ

Based on the mathematical results in Eq. (14) the following
points can be made:

Fig. 1. (a) Free-surface profile computed applying the singular point
method to the backwater equation, for a test case of Sivakumaran et al.
(1983) with Emin=R ¼ 0.253 and q ¼ 0.0359 m2=s; (b) experimental
verification of the free-surface slope at a control section computed
using the singular point method
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1. Solution S1 implies a subcritical (F < 1), or supercritical
(F > 1), flow at the weir crest ½dzbðxÞ=dx ¼ 0�, with zero
free-surface slope. This is the well-known case of a whole
subcritical, or supercritical profile, over a hump (e.g., Jain
2001, p. 98);

2. Solution S2 implies a critical flow (F ¼ 1) at the weir crest
½dzbðxÞ=dx ¼ 0�, with the free-surface slope given by
Eq. (2). To get a physical solution, the condition
d2zbðxÞ=dx2 < 0 is required, that is, a critical flow section
is formed only in weir flow (convex bottom profile)
(e.g., Chanson 2006); and

3. Solution S3 implies a critical flow (F ¼ 1) with
dzbðxÞ=dx ¼ 0 and d2zbðxÞ=dx2 ¼ 0. This is the theore-
tical case of critical, frictionless flow over a horizontal
bottom.

The present development is a generalization of a mathemati-
cal development by Henderson (1966, pp. 40–42). Solution S2 is
a general mathematical solution of Eq. (8), and, thus of Eq. (1).
Therefore, there is not fortuitous occurrence of dzbðxÞ=dx ¼ 0
and F ¼ 1. The critical depth, with finite free-surface slope,
is one of the possible solutions of the backwater equation.
Inclusion of the friction slope is simple (e.g., Hager 2010,
pp. 142–149), and it is not repeated here.

• Shock capturing finite-volume schemes using the Godunov up-
wind method, assisted by robust Riemann solvers, as used in
the original paper, yields accurate solutions of shallow-water
flows (Toro 2001). The integral form of Eq. (6) over a control
volume is (Toro 2001)

Z
Ω

∂U
∂t dΩþ

Z
A
n · FdA ¼

Z
Ω
SdΩ ð15Þ

where Ω = control volume; A = cell boundary area; and n =
outward unit vector normal to A. Eq. (15) was solved in the ori-
ginal paper using a high-resolution finite-volume scheme, where
details of the numerical scheme were extensively described. An
important aspect that should be clearly understood is that that
the integral Eq. (15) is able to describe both continuous and dis-
continuous solutions for Uðx; tÞ, without any specific treatment
as the flow crosses the critical depth. In the weir flow simula-
tions presented in the original paper, the smooth solution at the
weir crest was a mathematical result, found to be in perfect
agreement with the singular point method applied to Eq. (1).
In weir flow, steady transcritical solutions from F < 1 to F >
1 with dh=dx → ∞ are not possible. However, these are pos-
sible in unsteady flow during the propagation of a shock wave
(Fig. 6 of the original paper). In contrast, steady transcritical
solutions from F > 1 to F < 1 with dh=dx → ∞ are possible
in the form of a hydraulic jump. All these cases of transcritical
flow can be obtained from Eq. (15) without any specific
treatment near the critical depth by using a high-resolution
Godunov-type numerical scheme.

• The discussers asserted that “to describe general problems
of transitional flow it is necessary to use, at least, Boussinesq
equations.” The Saint Venant equations provide very accurate
solutions for some transitional flows. To demonstrate that
two extreme transcritical test cases, widely used in open channel
flows, were selected (e.g., Khan and Lai 2014, pp. 65–69). In
Fig. 2, a dam break wave in a dry, rectangular, horizontal
flume is considered. The flume is 0.093 m wide, 0.08 m in tall,
and 20 m long. The dam was located at coordinate x ¼ 10 m,
and the removal was considered instantaneous. The tailwater
portion of the flume was initially dry, and the water depth
in the dam 0.074 m. Experimental measurements conducted

by Schoklitsch (1917) two times after removal of the dam,
namely t ¼ 3.75 s and t ¼ 9.4 s, are plotted in Fig. 2(a). The
flow was modeled using Eq. (15) and the numerical scheme
of the original paper, introducing the dry bed case Riemann sol-
ver, and Manning’s equation with n ¼ 0.009 sm−1=3 (Khan and
Lai 2014). The effect of the friction slope was introduced
implicitly in the numerical model to increase stability near
the wet-dry front. A positivity preserving computational algo-
rithm was used for the wet-dry front treatment (Khan and
Lai 2014). As demonstrated in Fig. 2(a), Saint Venant equations
can model transcritical open-channel flow with great accuracy.
In Fig. 2(b), it is plotted the computed free-surface profile at
t ¼ 9.4 s, with indication of the position of the critical flow sec-
tion, where F ¼ U=ðghÞ1=2 ¼ 1. It can be observed that it is not
located at the dam axis. Computations for ideal fluid flow
(Sf ¼ 0) yields a result identical to the parabolic, analytical
solution by Ritter (Montes 1998; Chanson 2009)

x ¼ xdam þ t½−3ðghÞ1=2 þ 2ðghoÞ1=2� ð16Þ

where ho = upstream water depth ( = 0.074 m); and the dam
coordinate xdam ¼ 10 m. For Ritter’s solution, the flow is ex-
actly critical at the dam axis (e.g., Jain 2001, p. 215). Therefore,
the displacement of the critical point due to friction is seen to be
small, and the main effect is confined to the shape of the front.

Fig. 2. Validity of Saint Venant equations for transcritical flow in a
dry-bed dam break wave: (a) comparison of computed and measured
instantaneous free-surface profiles (data from Schoklitsch 1917);
(b) comparison of ideal and real fluid flow solutions at t ¼ 9.4 s,
and position of critical points (black circle and gray circle); computa-
tions using Δx ¼ 0.1 m and CFL ¼ 0.9
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Resorting to Boussinesq equations in this case is therefore not
needed.

A second test of Saint Venant equations for transcritical flow
is presented in Fig. 3, where a hydraulic jump measured by
Gharangik and Chaudhry (1991) is included. The channel is
14 m long, horizontal, and 0.46 m wide. The Manning’s rough-
ness coefficient is n ¼ 0.008 sm−1=3 (Khan and Lai 2014). The
upstream boundary conditions for the supercritical flow are a
water depth of 0.031 m, with a discharge of 0.118 m2=s. At
the downstream, subcritical section, only one boundary condi-
tion is set, namely the experimentally measured water depth of
0.265 m. The initial free-surface profile in the numerical model
was taken as a static water layer of 0.031 m. The tailwater level
was gradually increased from 0.031 to 0.265 m in 50 s in the
numerical model. Computational results obtained at t ¼ 350 s,
once a steady state was reached, are displayed in Fig. 3. It can be
seen that Saint Venant equations produce a good transcritical
flow simulation, and resorting to Boussinesq equations in this
test case is not needed.

Nonhydrostatic Modeling

• The discussers’ Fig. 1 presented an experiment for flow over a
broad-crested weir with a downstream chute slope of 45°, and an
unexplained, undocumented, theoretical simulation. The lack of
any detail in the discussion stating what equation was solved,
and the fact that reference was made to unpublished results,
made it impossible to elaborate a comment on this test and
the discussers’ theoretical results. They made reference to a
“finite slope” Boussinesq theory, which could not be precisely
understood by the writers. They also made reference to the
Boussinesq theory by Matthew (1991), used by Castro-Orgaz
and Hager (2009). A detailed reply to explain Boussinesq theory
for flows where the bottom slope is finite will be given later.

• Resort to the problem of flows from a horizontal to a steep
slope is made. Fig. 4 considers one test by Hasumi (1931)
for a slope transition composed by a horizontal reach followed
by a circular-shaped transition profile of R ¼ 0.1 m that finishes
in a steep slope reach of 45° inclination. This is similar to the
discussers’ experimental setup, therefore. The discharge is
0.987 m2=s (hc ¼ 0.10 m). The measured free surface and
piezometric bottom pressure head are plotted in the figure.
The flow in open channel transitions, including a slope break,
can be approximately modeled with the equations of an inviscid

and irrotational flow (Montes 1998). The flow problem pre-
sented in Fig. 4 was modeled using the Laplacian for z as a
function of the pair of variables (ψ, x)

∂2z
∂x2

�∂z
∂ψ

�
2

þ ∂2z
∂ψ2

�
1þ

�∂z
∂x

�
2
�
− 2

∂2z
∂x∂ψ

∂z
∂x

∂z
∂ψ¼ 0 ð17Þ

where ψ = stream function. The numerical model developed by
Montes (1994) was applied, and is not further described here.
The upstream and downstream boundary sections were located
at x=hc ¼ �3. Twenty streamlines were used to model this flow,
and the energy level on the horizontal reach was set to
H=hc ¼ 1.5. The two-dimensional (2D) computational results
displayed in Fig. 4 show that the ideal fluid flow computation
in the slope break problem produces good results. The potential
flow approximation is shown, therefore, to be an acceptable
approximation.

• To avoid the solution of the full 2D problem, as described ear-
lier, approximate one-dimensional (1D) models for potential
flow are desirable. Matthew (1991) developed an approximate
Boussinesq theory, where the extended energy equation reads

H ¼ zb þ hþ q2

2gh2

�
1þ 2hhxx − h2x

3
þ hzbxx þ z2bx

�
¼ const

ð18Þ
Here hx ¼ dh=dx; hxx ¼ d2h=dx2; zbx ¼ dzb=dx; and

zbxx ¼ d2zb=dx2. The bottom pressure head of Matthew’s
theory is (Castro-Orgaz and Hager 2009)

pb

γ
¼ hþ q2

2gh2
ð2hzbxx þ hhxx − h2x − 2zbxhxÞ ð19Þ

Based on Eqs. (18) and (19), the following observations are
made: (1) the theory considers the effect of the curvature of the
free surface and bottom, accounted for by the inclusion of hxx ¼
d2h=dx2 and zbxx ¼ d2zb=dx2; and (2) the theory considers the
effect of the slope of the free surface and bottom, accounted for
by the inclusion of hx ¼ dh=dx and zbx ¼ dzb=dx. The values

Fig. 3. Validity of Saint Venant equations for transcritical flow in a
hydraulic jump; comparison of computed and measured steady free-
surface profiles; computations usingΔx ¼ 0.2 m and CFL ¼ 0.9 (data
from Gharangik and Chaudhry 1991)

Fig. 4. Slope break problem with 45° chute slope; comparison of 2D
potential flow solution, experimental data (data from Hasumi 1931),
and 1D, potential, gradually varied flow solution
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of these slopes and curvatures are not necessarily small ones.
Therefore, Matthew’s (1991) theory, used by Castro-Orgaz
and Hager (2009), is an approximate potential flow model that
includes the effects of finite curvatures and slopes. Friction is
not included, however. This limits the application of Matthew’s
theory to a computational domain where the energy slope can be
taken horizontally, as done by Montes (1994) and Castro-Orgaz
and Hager (2009). Results of Castro-Orgaz and Hager (2009)
solving Eq. (18) were in good agreement with Eq. (17), and with
experimental observations.

• Castro-Orgaz and Hager (2009) analyzed the limits of the sin-
gular point method, applied to the backwater equation, for a
slope break. They applied this method to Eq. (1) for slope breaks
involving highly curved flows, and concluded that a model
based on Eq. (1) cannot be applied where the curvature is strong,
e.g., in the vicinity of the slope break. This is in full agreement
with the original paper, where it was demonstrated that the sin-
gular point method applied to Eq. (1) produces good results
where the curvature is weak, e.g., see Fig. 1(a). Both works
are, therefore, in full agreement.

• Castro-Orgaz and Hager (2009) found that, despite Eq. (1) can-
not be applied at the crest zone given the highly curved flow, it is
a good approximation in the downstream slope for x=hc > 1.
For illustrative purposes, consider flows away from the crest,
where streamline curvature effects can be neglected. The flow
is gradually varied, meaning that the variation of h with x is
small (this hypothesis is confirmed by the experimental results
plotted in Fig. 4). For these flows, it can be assumed that
h2x ≈ hxx ≈ 0. Furthermore, on the slope, the bed is flat, result-
ing zbxx ¼ 0. On this slope, however, the term zbx is finite and
equal to unity in this case. Therefore, despite hx being small, the
product (hx · zbx) remains finite. Therefore, Eqs. (18) and (19)
for gradually-varied, 1D potential flow on a finite slope read as
follows:

H ¼ zb þ hþ q2

2gh2
ð1þ z2bxÞ ð20Þ

pb

γ
¼ h − q2

2gh2
ð2zbxhxÞ ð21Þ

Castro-Orgaz and Hager (2009) differentiated Eq. (20), pro-
ducing for large F the ODE

dh
dx

¼ zbx
q2

gh3
ð1þ z2bxÞ

ð22Þ

For the horizontal slope reach, the solution of Eq. (22)
involving critical flow is solution S3 in Eq. (12). Therefore,
the theoretical flow profile is a horizontal line composed of
an infinite number of critical points (Castro-Orgaz and Hager
2009). Taking as a boundary condition the critical point at
the beginning of the slope break, the analytical solution of
Eq. (22) for a finite slope is (Castro-Orgaz and Hager 2009)

h
hc

¼
�
1 − 2zbx

1þ z2bx

x
hc

�−1=2
ð23Þ

Inserting Eq. (22) into Eq. (21), the bottom pressure head is

pb

γ
¼ h − q2

2gh2
ð2zbxhxÞ ¼ h

�
1 − z2bx

1þ z2bx

�
¼ h

1þ z2bx
ð24Þ

Eq. (24) is the finite slope approximation for the bottom pres-
sure head in gradually varied flows, towhich the discussers made
reference, quoting Fenton (2014, quoted in the discussion paper).

Therefore, based on potential, gradually varied flow, finite slopes
are accounted for both in free-surface and bottom-pressure-head
computations. The results of the computations based upon
Eqs. (23) and (24) are plotted in Fig. 4, for x=hc > 1, as recom-
mended by Castro-Orgaz and Hager (2009). It can be observed
that the results are in excellent agreement with experiments and
2D numerical solution.

• If application of a Boussinesq model with friction is found to be
necessary, resort to the development by Khan and Steffler
(1996) can be made. The Boussinesq version of their theory,
for steady flow, reads

d
dx

�
U2hþ h

2

pb

ρ

�
¼ −pb

ρ
∂zb
∂x − τb

ρ
ð25Þ

pb ¼ ρghþ ρ
U2

2
ðhhxx − h2x − 2hxzbx þ 2hzbxxÞ þ τb

∂zb
∂x
ð26Þ

where τb = bed shear stress. Eqs. (25) and (26) can be coupled to
produce a simple ODE. Eq. (26) is a generalization of Eq. (19),
where the effect of τb on pb is accounted for.

• To show the general applicability of the singular point method,
at the time that it is further demonstrated that Boussinesq equa-
tions are not the only model that can produce good transcritical
flow simulations, consider Dressler (1978) theory for flow over
curved beds. For steady flow, the theory gives the following
ODE (Sivakumaran and Yevjevich 1987), after rearrangement:

dN
dξ

¼
− sinθbð1− κbNÞ− q2

g κb
dκb
dξ

lnð1−κbNÞþκbN
½ð1−κbNÞ lnð1−κbNÞ�3

cosθb þ q2

g κ
3
b

lnð1−κbNÞþ1

½ð1−κbNÞ lnð1−κbNÞ�3
¼Φ1ðN;ξÞ
Φ2ðN;ξÞ

ð27Þ

where ξ = bottom-fitted coordinate; κb ¼ κbðξÞ = curvature of
the bottom profile; θb = local inclination angle of the bottom
profile, zbðξÞ, with the horizontal plane; and N = distance from
the channel bottom to the free surface, measured orthogonally
outward from the bottom curve. Using the same mathematical
development presented with Eqs. (8)–(14), it can be demon-
strated that at a weir crest, the flow is critical, and Eq. (27)
is indeterminate. Consider flow over a hump (Fig. 5) for a test
case of Sivakumaran et al. (1983) with Emin=R ¼ 0.516 and
q ¼ 0.11197 m2=s [test of Fig. 5(a) in the original paper].
The critical depth for Dressler’s theory is computed setting to
zero the denominator of Eq. (27) (Dressler 1978)

Φ2ðNc; ξÞ ¼ cos θb þ
q2

g
κ3b

lnð1 − κbNcÞ þ 1

½ð1 − κbNcÞ lnð1 − κbNcÞ�3
¼ 0

ð28Þ
The solution of the nonlinear Eq. (28) by the Newton-Raph-

son method gave the crest flow depth. Eq. (27) was then inte-
grated using the Runge-Kutta method in the upstream and
downstream directions, starting at the crest. After removal of
the indetermination at the weir crest (c), the free surface slope
at the crest was found to be

�
dN
dξ

�
c
¼ −

�∂Φ1∂ξ
�
1=2

c�∂Φ2∂N
�
1=2

c

ð29Þ

where
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�∂Φ1

∂ξ
�

c
¼ −κbð1 − κbNcÞ ð30Þ

�∂Φ2

∂N
�

c
¼ 3

q2κ4b
g

½lnð1 − κbNcÞ þ ð5=6Þ�2 þ ð11=36Þ
½ð1 − κbNcÞ lnð1 − κbNcÞ�4

ð31Þ

Computational results are displayed in Fig. 5(a), showing
good agreement with experimental measurements. The bottom
pressure profile pb was computed from (Dressler 1978)

pb ¼ ρgN cos θb þ ρ
q2κ2

b

2½lnð1 − κbNÞ�2
�

1

ð1 − κbNÞ2 − 1

�
ð32Þ

showing again good agreement with observations in Fig. 5(a).
These results demonstrate that the singular point method is a
mathematical technique that can be applied to different theories,
and that transcritical flow problems can also be tackled with
other approximations different from Boussinesq equations.
Eq. (27) was alternatively solved in Fig. 5(b) taking as starting
point the experimentally measured water depth upstream of the
hump. Computational results presented in Fig. 5(b) reveals that
a subcritical flow profile along the entire hump is formed, as
found by Sivakumaran et al. (1983). A supercritical flow profile
can also be determined. This solution was forced by the up-
stream experimental water depth, which does not permit the
flow to pass across the critical depth. A recent experimental
verification of the singular point method was presented by
Kabiri-Samani et al. (2014).

Concluding Remarks and Recommendation

• The singular point method is a useful tool to be used when
needed. It has been experimentally verified. As to which model
should be proposed to compute transcritical flows, common
sense dictates the path to follow. Saint Venant equations are
a good model in most cases, like for the computation of the
flood-inundation area in river flows. If the computation of
bed pressures is the main concern, then resort to Boussinesq
equations can be made, e.g., for the determination of cavitation
risk in a dam spillway crest. Between these two extremes are
intermediate options, like use of Dressler theory.

• Since the pioneering work of Bélanger (1828), a number of
scholars added to the general body of knowledge available today
in the field of open channel hydraulics. It is suggested to mode-
lers and researchers to keep in mind all these computational
tools, including the singular point method, to continue advances
in this fascinating field of research.
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