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A B S T R A C T

While leading scholars emphasised the role of turbulence in waterways and the complex fish–turbulence in-
teractions, what do we really know about turbulence? A recent paper developed a comparison between different
boundary treatment to improve upstream passage of small fish in box culverts. The limitations of the work are
discussed. It is argued that the practical engineering design implications cannot be ignored, while a solid un-
derstanding of turbulence typology is a basic requirement to any successful boundary treatment conducive of
upstream fish passage.

1. Presentation

During the last decades, concerns about the ecological impact of
culverts on stream connectivity have led to some evolution in design
(Chorda et al., 1995; Warren Jr. and Pardew, 1998; Hotchkiss and Frei,
2007). The impact in terms of fish passage may adversely affect the
upstream and downstream eco-systems (Briggs and Galarowicz, 2013).
Common culvert fish passage barriers encompass perched outlet with
excessive vertical drop at the culvert outlet, high velocities and tur-
bulence in the barrel, debris accumulation at the culvert inlet, and
standing waves in inlet and outlet (Behlke et al., 1991; Olsen and Tullis,
2013; Wang et al., 2018). Watson et al. (2018) presented a comparison
between different boundary treatment to improve upstream passage of
small fish in box culvert barrel. Implicitly their work was conducted for
small water flow rates and not tested for large flood events corre-
sponding to culvert design discharges. The writer has taught the hy-
draulic design of culverts to over 5000 Australian civil engineers from
1990 to 2019 at the University of Queensland, Australia, and he wrote a
number of book chapters on hydraulic design of culverts (Chanson,
1999; Chanson, 2004; Chanson and Felder, 2017) and several review
articles (Chanson, 2000, 2001, 2007). Based upon this experience and
expertise, the paper argues that the testing procedure of the long-
itudinal beam design was biased and the practical engineering design
implications cannot be ignored. It is shown that biological and hydro-
dynamic testings should be consistent with the engineering design ap-
proach of culverts. In particular, an understanding of turbulence ty-
pology is uppermost critical to a successful boundary treatment to
restore connectivity of fish habitats and population at road crossings.

2. Longitudinal beam designs in a context

Channels with longitudinal beams have been studied for decades in
chemical engineering, environmental and sanitary engineering, aero-
nautics, astronautics, biology and geology. Designs have been used for
close to a century in water treatment plants (Randtke and Horsley,
2012). Longitudinal beams along channel walls has been successfully
tested for the enhanced rate of heat transfer (Naik et al., 1999; Chang
et al., 2008), mass transfer (Stamou, 2008), and biological filtration
(Roo, 1965). Longitudinal ribs and beams are used in a number of
stages of water treatment plants, e.g. maze flocculator, high-rate clar-
ification tube settler, sedimentation basin with plate settlers, sludge
clarifier (Degremont, 1979). Similar designs are incorporated into
stormwater treatment systems and combined sewers (FNDAE, 1988). In
alluvial channels, longitudinal troughs and ridges may develop along
the mobile bed with preferential sediment transport mode (Nezu and
Nakagawa, 1984; Shvidchenko and Pender, 2001). Small-size long-
itudinal beams can produce net drag reduction, with appropriate
groove spacings (Bushnell and Mcginley, 1989; Choi et al., 1993). The
scales of fast swimming sharks have fine longitudinal ridges, enabling
faster swimming (Nitschke, 1983). A related application is the flow past
seal fur, due to the streamwise fur pattern (Itoh et al., 2006).

3. Testing protocol: incompatibility with culvert design methods

The data of Watson et al. (2018) were presented for a constant bulk
velocity irrespective of the boundary treatment, e.g. smooth (control),
ledge, beam, baffles. Fig. 1 presents photographs of three boundary
treatments: smooth (control), square beam, small corner baffles. The
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experimental approach is questionable because (a) the bulk velocity is
not constant along the channel in presence of a free-surface, in response
to energy losses, gravity effect and tailwater conditions, and (b) the
bulk velocity is not an engineering design parameter for culverts and
road crossings.

In a horizontal rectangular channel, the water depth and velocity
vary with longitudinal distance as functions of the boundary treatment
and flow resistance (Henderson, 1966). The backwater profile would
typically be a H2 profile (Chow, 1959), and the bulk velocity may vary
by more than 20% depending upon the boundary conditions (e.g.
Cabonce et al., 2017, 2019). Experimental observations in 12m long
0.5 wide horizontal channel are presented in Fig. 2, and the facilities
were similar to those used by Watson et al. (2018). For a unit discharge
q= 0.111m2/s, the data of showed a bulk velocity increasing from
0.64m/s to 0.71m/s along the smooth (control) boundary flume, and
from 0.54m/s to 0.72m/s with small triangular baffles (Fig. 2b).

Furthermore, for a given bulk velocity at a fixed location, the water
discharge changes in response to the boundary treatment and asso-
ciated energy losses (Rouse, 1938; Chow, 1959; Sturm, 2001). Basic
hydraulic engineering calculations demonstrate that, in the same 12m
long 0.5m wide channel, the water flow rate increased by 10% to 25%
from a smooth (control) condition to a triangular baffle treatment, to
achieve the same bulk velocity. The rate in discharge increase is a
function of the reference bulk velocity, sampling measurement location
and tailwater conditions. Basically, the testing procedure of Watson
et al. (2018) is strongly biased against, and would provide meaningless
results for, high-flow resistance boundary treatment(s), e.g. triangular
baffles, cross-bars, full-height sidewall baffles.

In practice, the hydraulic design parameters of culvert are the water
discharge and afflux (Herr and Bossy, 1965; Concrete Pipe Association
of Australasia, 2012; Chanson, 1999). The design of fish-friendly cul-
vert design requires biological data compatible to engineering design
procedures and useable by professional engineers (Katopodis and
Gervais, 2016; Leng et al., 2019). A more appropriate methodology is
the comparison of fish swimming performances between different
boundary treatments tested with identical water discharge, as pre-
viously undertaken (Wang et al., 2016; Cabonce et al., 2017). For ex-
ample, Cabonce et al. (2019) demonstrated conclusively some im-
proved upstream traversability and endurance of juvenile silver perch
(Bidyanus bidyanus) with small triangular corner baffles (Fig. 1c),
compared to a smooth (control) channel geometry, for a relatively large
discharge (q=0.111m2/s). While a small fraction of small fish could
be disoriented in the negative wake behind the baffle (Cabonce et al.,
2018), the proportion of fish negotiating successfully the baffles were
substantially larger, by nearly 50%, than in the smooth-wall control
flume.

There are clear evidences that some boundary treatment can assist
with upstream fish passage. At the same time, a number of boundary
treatments have negative impact on the engineering design. in turn on
the total cost, and possibly on the structural integrity of the structure
with associated safety concerns for the human population. The design
of fish-friendly road crossings and culverts cannot dissociate ecology,
engineering and practical considerations.

4. Practical considerations of longitudinal beams - Design,
manufacturing, installation, operation, blockage

The longitudinal beam design might provide some striking result in
terms of fish passage and behaviour for very-small water discharges in
idealised laboratory situation with PVC and glass surfaces. Its im-
plementation to hydraulic structure designs must however be carefully
considered within the engineering design of a culvert, because the beam
does impact on the culvert operation and performances at small,
medium and large water discharges, as well as on the upstream passage
of larger fish.

The hydrodynamic motion in the longitudinal square beam channel
leads to a complicated fluid dynamics. The strongest turbulence is
generated in the corner regions, i.e. external and internal corners as-
sociated with the regions of sharpest curvature (Prandtl, 1952) (Fig. 3),
and their effects are seen in most parts of the channel (Sanchez et al.,
2018). Secondary currents develop as a result of the hydrodynamic
singularities generated by the sharp corner edges, as sketched in Fig. 3.
The sharp edges and corners of the square beam constitute well-known
hydrodynamic discontinuity, conducive of strong secondary currents
(Kennard, 1967; Gessner, 1973). The complex turbulent flow motion
has further a marked effect on the flow resistance of the channel and in
turn on the discharge capacity, as previously reported (Kennedy and
Fulton, 1961).

A number of technical challenges encompass the manufacturing and
installation of the beam (Fig. 1b), as well as operational considerations.
The preferred manufacturing process of longitudinal beam channel
would be in factory, to ensure that the beam position and alignment are

(A)

(B)

(C)

Fig. 1. Boundary treatment in a 0.5 m wide box culvert barrel channels - Flow
direction from right to left.
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within strict specifications. This is particular critical to ensure sharp
edges, as any rounding would be most detrimental to the low-velocity
zone size and culvert performance (Sanchez et al., 2018). An in-situ
fitting would not meet the same standards, leading possibly to a sub-
stantially different flow field, with adverse impact on the culvert op-
eration and function. In-situ installation, e.g. for retrofitting, would
only be feasible in relatively large culvert cells: i.e. greater than 1.5m

to 1.8m, and the installation tolerances are unlikely to be better
than±10mm.

The study considered 0.05×0.05m2 square beam, positioned
0.05m above the floor. During operation, the cavity underneath the
beam is at risk of siltation and sedimentation, as well as blockage. The
accumulation of solid particles could lead to a partial or complete
blockage of the low velocity regions, because the cavity flow is too slow
and below current guidelines for self-cleaning (QUDM, 2013). Larger
debris, including rocks, branches, trees, could also become jammed
beneath the beam and ledge, obstructing the cavity and reducing fur-
ther the culvert discharge capacity, thus impacting adversely on the
upstream passage of both small-bodied and larger fish.

Simply, the usage of longitudinal beam in culverts must be con-
sidered carefully in a holistic fashion as part of the culvert design
process. A number of practical considerations show major technical
challenges during design, manufacturing, installation and operation. In
many instances, alternative designs should be preferred and im-
plemented, including asymmetrical large roughness and possibly small
corner baffles.

5. Summary - And what about the boundary layer?

The title stated some “utilisation of the boundary layer”. How? A
boundary layer is a flow region where the hydrodynamic properties are
affected by boundary friction (Schlichting, 1979; Bailly and Comte-
Bellot, 2015). In a culvert barrel channel, detailed hydrodynamic
measurements showed that the flow is fully-developed and the
boundary layer occupies the whole flow area (Cabonce et al., 2017,
2019; Wang et al., 2018). While all configurations tested by the authors
corresponded to some form of turbulent boundary layers, there were
fundamental differences in the turbulence typology and key hydro-
dynamic processes, that cannot be ignored. With a smooth channel
(control) (Fig. 1a), the dominant mechanism of energy dissipation is the
boundary skin friction, with small secondary current of Prandtl's second
kind in the bottom corners (Rodriguez and Garcia, 2008). In presence of
longitudinal ledge and beam (Fig. 1b), strong secondary circulation of
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Fig. 2. Longitudinal profile of water depth d and
bulk velocity Vmean in the 12m long 0.5 m wide
horizontal flume for Q=0.0556m3/s. Comparison
between control (smooth boundary) channel,
channel with square beam, and channel with small
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the longitudinal baffle spacing Lb. Data set: Cabonce
et al. (2017, 2019), Sanchez et al. (2018). Note that
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Fig. 3. Sketch of secondary current of Prandtl's second kind in a turbulent flow
parallel to an outer corner, looking downstream.
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Prandtl's second kind occurs, linked to the development of large
streamwise vortices (Tamburrino and Gulliver, 2007; Sanchez et al.,
2018), as well as surface longitudinal streaks (Levi, 1965). With small
triangular baffles (Fig. 1c), the flow field is dominated by fluid
streamline separation at the edge of each baffle (Cabonce et al., 2019),
with a negative wake behind and boil of the first kind (Schlichting,
1979).

The interpretation of the turbulence typology is uppermost critical
to a successful boundary treatment conducive to upstream passage of
small-bodied weak-swimming fish. A precise knowledge of the entire
three-dimensional velocity field is essential, because the rate of work
and energy required by fish to thrust itself against the water discharge
is proportional to the cube of the local fluid velocity, i.e. Vx

3 (Wang and
Chanson, 2018). In a box culvert barrel, low velocity zones occur next
to the bottom and walls, as well as at the bottom corners, and these
highly-turbulent reduced velocity zones are the preferential swimming
zones for small fish in box culverts, as shown by Gardner (2006), Wang
et al. (2016), Cabonce et al. (2018, 2019). An in-depth understanding of
the turbulent flow hydrodynamics constitutes a core requirement to
comprehend the fish-fluid interactions, and a pre-requisite for physi-
cally-based mitigation measures of the ecological impact of culverts in
terms of upstream fish passage. Researchers cannot be complacent
about turbulence because it is ubiquitous in the nature: “Turbulence is
the most common, the most important and most complicated kind of flow
motion” (Bradshaw, 1971, p. xi) and “many of its seemingly simple
questions remain unanswered” (Smits and Marusic, 2013, p.25).
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