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The original article presented a challenging and interesting case
study of hydraulic jump in a real-world application and discussed
a number of very relevant practical considerations. In this discus-
sion, it is argued that some air-water results showed differences
from traditional air-water flow results in the laboratory for a num-
ber of reasons, including different inflow and boundary conditions.
In turn, one needs to be careful with some definitive conclusions,
especially based on one flow condition with a Reynolds number
close to some of the largest laboratory studies to date.

The authors did well to discuss the use of phase-detection needle
probes in the field and the associated practical considerations.
During field studies, needle probe sensors may be damaged by
quartz particles and small debris, as previously discussed at the
Aviemore Dam spillway (Keller 1972; Cain 1978) and reported in
several laboratory studies conducted with high velocities (Low
1986; Cummings 1996; Gonzalez 2005). Furthermore, the water
quality, including salinity and presence of surfactants, may ad-
versely affect the signal outputs of phase-detection electrical probes
(Timkin et al. 2003; Chanson et al. 2006; Salter et al. 2014),
including the air-water flow properties in hydraulic jumps (Reif
1978; Pothof et al. 2013). Importantly, the single-threshold tech-
nique applied by the authors might not be the best phase-
discrimination method in the presence of adverse water quality
effects (Jones and Delhaye 1976; Chanson et al. 2002). A double-
threshold technique, a differentiation technique, or a combination
of signal thresholds and gradient threshold could be more suitable,
although some validation would be required. For example, a com-
bination of signal thresholds and gradient threshold might be per-
formed successfully for the probe signal shown in Fig. 2(a) of the
original article. Simply, “the signal processing [of phase-detection
needle probes] is not trivial, even in simple steady one-directional
flows” (Chanson 2020).

The case study was conducted in a B-jump, i.e., a hydraulic
jump down a sloping chute immediately downstream of a sluice
gate. Such jumps are also common in some standard culverts with
drop inlets and in minimum-energy-loss culvert inlets operating
under less than design flow conditions (Fig. 1). Several studies
showed that both the boundary conditions and inflow conditions
significantly affect the air-water flow properties in hydraulic jumps.
Resch and Leutheusser (1972) demonstrated some seminal differ-
ences in hydraulic jump rollers with identical inflow Froude num-
bers between partially and fully developed inflow conditions, the
former likely corresponding to the case study inflow. Mignot and
Cienfuegos (2011) showed that turbulence production was pri-
marily confined to the developing shear layer in the case of partially

developed inflow, with Chanson and Brattberg (2000) arguing that
the free-surface velocity immediately upstream of the roller is the
most relevant velocity scale. Thandaveswara (1974) and Stojnic
et al. (2021) presented air-water data in hydraulic jumps located
downstream of a steep chute, showing the significant role of
pre-air entrainment. That is, the inflow aeration modified the hy-
draulic jump roller characteristics, including its length and the air
diffusion process. In horizontal channels with partially developed
inflow, several studies investigated the effects of large bed rough-
ness (Pagliara et al. 2010; Felder and Chanson 2018; Bahmanpouri
et al. 2019). The experimental observations showed a drastic modi-
fication of both roller flow patterns and air-water flow properties.
Fig. 2 presents a comparison in terms of the vertical distributions of
void fraction and dimensionless frequency for three data sets mea-
sured for a similar Froude number Fr1 at comparable dimensionless
locations x=d1 from the roller toe (Table 1). That is, the case study
(B-jump) data are compared to classical hydraulic jump data
(smooth invert) (Chachereau and Chanson 2011) and measure-
ments in a horizontal hydraulic jump with artificial bed roughness
(Felder and Chanson 2018). The comparative results showed mark-
edly different trends, aeration levels, and fragmentation rates. Such
differences were most likely linked to the different boundary con-
ditions because all the data (in Fig. 2) were collected with similar
dual-tip phase-detection probes and characterized by some partially
developed inflow (Table 1). Simply, any true comparison of air-
water flow properties in hydraulic jumps must be based on data
sets with comparable boundary and inflow conditions.

Finally, the authors are correct to remind us of the absence of
benchmark data sets for any investigations of scale effects affecting
the air-water flow properties in large prototype stilling basin oper-
ating at large Reynolds numbers (Re > 107). Yet, a recent data set
(Estrella et al. 2022) investigated the air-water flow properties in

Fig. 1. B-jump in a minimum-energy-loss culvert inlet at Stones
Corner on March 30, 2017 (shutter speed ¼ 1=200 s, α ¼ 4°).
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weak hydraulic jump with Reynolds number between 0.08 × 105

and 3 × 105. At the largest Reynolds number, the results did show
a sizable number of large bubbles, in amounts comparable to the
case study. The finding was further consistent with other laboratory
studies at higher Froude numbers (Chanson 2007; Montano and
Felder 2020). In the present case study, the results might not be
truly Froude-similar to past laboratory studies because of the
marked differences in inflow and boundary conditions. Maybe
the key outcomes are (1) a need for field measurements of air-water
flow in large prototypes; and (2) the necessity for detailed air-water
flow measurements in B-jump, to complement the present case
study.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.

Notation

The following symbols are used in this paper:
d1 = inflow depth (m);
Fr1 = inflow Froude number;
Re = Reynolds number;
x = longitudinal distance (m) from the roller toe positive

downstream;

y = vertical distance (m) measured normal to the invert; and
α = angle between longitudinal invert slope and horizontal.
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Table 1. Comparative studies of air entrainment in hydraulic jumps with comparable inflow Froude number Fr1 at similar dimensionless locations x=d1
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