1. INTRODUCTION

The Roman engineering heritage encompasses a number of magnificent structures including bridges, roads, dams and aqueducts, with many still standing (Fig. 1 to 4). Among these, the aqueducts constitute a fine example of water resource engineering and many aqueduct sections are still in use, in Tunisia, Spain and France for example. Surprisingly, relatively little is known on their engineering design nor the hydraulic knowledge of Roman engineers (Hodge 1992, Fabre et al. 2000). Some scholars suggested that the basic principles of fluid mechanics were unknown from the Romans (Garbrecht 1987, Hodge 1992,2002), but recent arguments showed the contrary (Chanson 2000,2002,2010).

Herein the hydraulic design of several Roman aqueducts is re-analysed using modern hydraulic engineering knowledge. The operation of the aqueduct system is discussed and it is shown that the aqueducts were equipped with a number of hydraulic structures for flow control and energy dissipation. The design of these devices implied a solid expertise in open channel hydraulics and pipe flows. In turn, the Roman hydraulic engineers had some advanced technical expertise.
2. ROMAN AQUEDUCT: DESIGN AND CONSTRUCTION

The aqueducts were some long subterranean channels following the topographic contours lines. The very-large majority of the aqueduct was built at or just below the natural ground level. The channel invert and sidewalls were lined with mortar up to 0.5 to 1 m above the invert (Fabre et al. 2000, Burdy 2002). During operations, the waters were flowing as open channel flow and the water depths ranged typically from less than 0.05 m to 1 m (Chanson 2002). The conduit was covered to reduce the contamination of the water by dirt and impurities. The roof internal height was usually between 1.1 and 2.1 m allowing regular access for maintenance. The role of repair and maintenance crews was critical for a proper operation of the aqueduct system as well as the quality of the waters.

The construction of aqueducts was a gigantic task often conducted under the supervision of military engineers. The construction was a public entreprise financed by the Emperor, the community, private citizens or a combination of these (Leveau 2004). The Nîmes aqueduct (Fig. 2A) was financed by both the Emperor and the city. The construction costs were huge considering the modest flow rates: about 2 to 2.5 millions sestercies per km for the aqueducts of Rome and a water discharge less than 0.4 m³/s (Février 1979, Leveau 1991, 2006). Based upon the silver contents of sesterce during the Augustan period, the cost would be today 1.9 to 2.4 millions AU$ per km assuming US$0.71 per g of silver! For comparison, the Tarong water pipeline construction in Australia costed US$100,000 per km in 1994, and the pipeline delivered 0.9 m³/s.
The construction of the aqueduct system was a gigantic project and the design required a range of engineering skills including hydrology, surveying, civil and hydraulic engineering, and construction management (Février 1979, Mays 2010). The construction site involved hundreds of workers and it took several years to complete the aqueduct: from 3 years for the Anio Vetus in Rome to 15 years for the Nîmes aqueduct, and possibly more for some. The engineers used three types of conduits: open channels, lead pipes and earthenware pipes (Leveau 2006). The canals were built in masonry and sometimes cut in the rock and the flow motion was driven by gravity. The lead pipes were used for pressurised sections including the inverted siphons (e.g. Aspendos, Lyon).
The Roman aqueducts were built for the public health and sanitary requirements of the cities. These needs encompassed the public fountains, public baths, and toilets (Hodge 1992, Fabre et al. 2000, Mays 2010) (Fig. 5). The aqueducts were built after the town establishment, and did not constitute the original drinking water supply. The aqueduct water delivery was used further in the sewer system and assisted with the fight against fires (e.g. in Rome). Some aqueducts were built for irrigation purposes and to feed the industries (e.g. mines, flour mills). A number of aqueducts were built for the drainage of swampy areas such as the Fucine Lake in Italy. Altogether it was argued that an aqueduct was a show of power and wealth of the Roman civilisation (Fevrier 1979, Leveau 1979).
3. ROMAN AQUEDUCT: HYDRAULICS AND OPERATION

A number of aqueducts were fed by natural springs. Some springs are still in use today: e.g., those of the Gorze, Mons and Nîmes aqueducts (Chanson 2002, 2008). Their operation provides some interesting data. Recent hydrological records suggest that a water supply system cannot operate at large flow rates for more than a couple of months per year at best. During the dry seasons, the aqueduct discharge was limited by the spring output, and recent hydrological data yielded a ratio of maximum to minimum daily flow rates between 10 to more than 1,000 (Chanson 2008). For example, the spring of La Siagnole at Mons yielded between zero and 17.9 m3/s for the period 1981-1993; the daily discharge was less than 0.07 m3/s for 1/4 of the study period, typically during the summer; within a given month, the daily discharge varied within one to three orders of magnitude (Valenti 1985). While the ancient flow rates are unknown, it is thought that a similar discharge variability occurred during the Roman period.

In response to the discharge variability, the Roman engineers devised a number of remedial measures. These included the construction of reservoirs and cisterns at the aqueduct downstream end: e.g., at Cuicul (Algeria), Autun (France), Rome and Carthage (Fig. 3B). As an illustration, the cistern capacity was in excess of 3×10^6 m3 at Dougga (Tunisia) (De Vos Raaijmakers et al. 2013). Another method consisted in the dynamic regulation of the aqueduct itself. Vitruvius recommended the installation of regulation devices (Hodge 1992), and a number of recent studies presented several in-stream regulation systems (Fabre et al. 2000, Bossy et al. 2000, Chanson 2002). The regulation of the aqueduct was a basic requirement to prevent overflows and spillages during the wet seasons, to provide an optimum operation with minimum energy losses and maximum flow rates during the dry periods, to regulate the water outflow and for maintenance. A dynamic regulation allowed a regulated water supply in response the city needs during the day time and some water storage in the channel sections during the night periods (Bossy et al. 2000, Chanson 2002, 2008). For a relatively large aqueduct (e.g. Gorze, Nimes), the aqueduct conduit could store about 20,000 m3 to 50,000 m3 of water, corresponding to 1 to 3 weeks of water supply depending upon the population and the water restrictions.

The successful operation of the aqueducts required some solid expertise in open channel hydraulics and hydraulic structure designs. For example, some advanced stormwater systems were designed and built to protect the aqueduct from runoff water, including multi-cell culverts and bridges (Chanson 2002b, 2008). For example, the floods of the Gardon River, flowing beneath the Pont du Gard (Fig. 2A), are renown; these spectacular floods are locally called ‘gardonnades’. Between 1463 and 2003, 123 major floods were recorded: i.e., a major flood every 4 to 5 years. The maximum instantaneous discharge is 3,100 m3/s for a 1-in-20 years flood. Three floods in excess of 5,000 m3/s were documented between 1900 and 2010 (Dezileau et al. 2014). These data may be compared to an average annual discharge of 33 m3/s.

Along the aqueducts, a number of regulation basins were built and they included some control gates and overflow devices. The control gates would be undershoot sluices while the overflows would be controlled by overshoot gates.
The operation of vertical sluice gates along the Gorze and Nîmes aqueducts were estimated (Chanson 2002). A proper operation required some gate openings less than 0.07 to 0.1 m at Gorze and less than 0.1 to 0.12 m at Nîmes. In other water systems, some overflow weirs were used to regulate the flow. The successful operation of regulation devices required further some sound prediction of the free-surface profile along the aqueduct channel to ascertain: the optimum location of the devices, and their optimum characteristics. Did the Roman engineers use some small size (laboratory) models? Today any such water supply system would be modelled physically or numerically during the design stages.

![Fig. 6. Roman drophshaft in operation](image)

The aqueducts were equipped with a few steeper sections as well as some overflow devices that required the introduction of energy dissipation systems. The dissipation of the kinetic energy was critical for a proper downstream operation, to prevent scour of the channel bed and damage to the aqueduct structure itself. Some recent studies showed at least three designs: that is, a steep smooth chute followed by a hydraulic jump, a stepped cascade, and a dropshaft system (Chanson 2000,2002c). Figure 6 shows the full-scale model of a dropshaft installed on the Yzeron aqueduct (Lyon). Figure 6 illustrates its operation for two different flow rates (Chanson 2007). One major dissipation structure was located along the Valdepuentes aqueduct at Cordoba (Spain) with a series of three dropshaft cascades yielding a total drop of more than 350 m. The operation of these energy dissipation structures was complex, including by modern standards, and required some advanced hydraulic expertise.

4. DISCUSSION

From Antiquity up to modern times, the Romans, Moslems and Spaniards contributed to the dissemination of hydraulic engineering and hydraulic structure design. Hydraulic structures and canals were built very early in the Mediterranean area. The construction technique spread around the Mediterranean Sea in Roman times. During their expansion, the Moslems gained expertise from the Sabaens, Nabataeans and Romans among a few civilisations (Violet 2007). The Moslems brought their water traditions to Spain. After the reconquest, the Spaniards re-used a
number of Roman and Moslem structures, and they expanded the hydraulic engineering expertise, which was in turn transferred to the Americas (Smith 1971). Clear evidences of the Spanish influence were found in Mexico and United States. Figure 7 shows the remains of a Spanish aqueduct completed during the 18th century and used up to the mid 20th century.

![Aqueduct bridge](image)

(A, Left) Arcades, Calle de Manuel Garcia Vigil

(B) Aqueduct bridge

Fig. 7. Spanish aqueduct in Oaxaca, Mexico completed in 1751 (Photographs on 13 Mar. 2015)

With most ancient canal systems, it is believed that the hydraulic knowledge developed locally. In Irak, Yemen Israel, large waterways systems were built. In Peru, the Indians civilisations (e.g. Chimus, Incas) constructed significant water supply canal systems prior to the Spanish conquest. On another hand, the experience of Roman dropshaft and dropshaft cascades was unique (Chanson 2000, 2002c). In fact, the design expertise was forgotten and lost until recent times.

5. CONCLUSION

The Roman aqueducts operated successfully for centuries and their design constituted some major achievement including by modern standards. Although the aqueducts were long subterranean channels following the hillslope contour lines, they were equipped with a number of hydraulic structures including regulation devices, stormwater...
systems and energy dissipators. These successful design and operation of these devices required some advanced knowledge in fluid mechanics and hydraulic engineering. Indeed the complexity of basic fluid mechanics is linked with the non-linearity of the governing equations. The Roman aqueducts represent a superb illustration of successful civil engineering designs, covering hydrology, hydraulics, structural engineering, surveying and project management. This contribution yields many questions. Who were the Roman engineers? How did they design the aqueduct system? How did the engineers predict the free-surface profiles and determine the needs for regulation devices and energy dissipators? Was physical modellling or prototype tests conducted? The author believes that the Roman engineering expertise was limited to a handful of engineers; these were the precursors of the French Ingénieurs du Corps des Ponts, British Royal Engineers, and US Army Corps engineers.

ACKNOWLEDGEMENTS

The writer acknowledges the exchanges with many people, incl. Dr. D. Blackman, Mrs. Chardon-Picault, Dr. P. Leveau, Mr. J.C. Litaudon, Mr. Strasberg, late Mr. V. Valenti, Dr A.V. Villanueva.

REFERENCES

Bibliography

