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ABSTRACT 

A breaking tidal bore is a highly turbulent transient process that may affect the natural estuarine system. Like 

many natural process flows, the tidal bore flow motion is dominated by coherent structure activities and 

turbulent events, with significant impact in terms of sediment processes. Herein an unsteady turbulent event 

analysis was developed for highly-unsteady rapidly-varied breaking bore flows. New experimental data were 

collected in a large size facility under controlled flow conditions. The data analysis was based upon basic 

concepts, in which turbulent bursting events were defined in terms of the instantaneous relative turbulent flux, 

and applied to the rapidly-varied highly-unsteady bore motion. The instantaneous three-dimensional velocities 

were recorded using an Acoustic Doppler Velocimetry. Rapid longitudinal deceleration, transient recirculation 

and large velocity fluctuations were observed during the bore passage, especially more intensive next to the 

sidewall. A turbulent event analysis was performed in the transient flow. The threshold constant k =1 was 

obtained from a sensitivity analysis. The unsteady turbulent event results highlighted an intense bursting 

process during the flow deceleration, in terms of the relatively large event duration, event amplitude and 

relative magnitude compared with the early flood flow phase. The unsteady event amplitude and relative 

magnitude exhibited a quasi-symmetrical distribution about the zero amplitude. The majority of turbulent 

events lasted between 0.005 s to 0.06 s. Overall, the results showed that the turbulent event analysis provided 

valuable quantitative details into the turbulent bursts that are responsible for major mixing and sedimentary 

processes. 
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1 INTRODUCTION 

Turbulence in Nature is not a truly random process. Many geophysical flows are the locus of intense 

vortical structure activities and turbulent events. By definition, a turbulent event is a series of turbulent 

fluctuations containing more energy than the average turbulent fluctuations within a studied data set. 

Turbulent events are often associated with eddies and bursting, and play a major role in terms of sediment 

processes including scour, transport and accretion, as well as in contaminant mixing and dispersion 

(Nakagawa and Nezu 1981, Nielsen 1992). Turbulent event analyses have been successfully applied to a 

number of geophysical applications assuming quasi-steady flow conditions (Narasimha et al. 2007, Trevethan 

and Chanson 2010). Their application to transient flow situations is rarer (Leng et al. 2018). 

In an estuary, a compression wave may propagate upstream as the result of macro-tidal conditions (tidal 

bores) or offshore tsunami generation (Chanson 2011, Tolkova et al. 2015, Reungoat et al. 2018). The shape 

of the bore is closely linked to its Froude number defined in its more general form as (Chanson 2012): 
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with V1 the initially-steady flow velocity positive downstream U the bore celerity positive upstream, g the 

gravity acceleration, A1 the initial flow cross-section area and B1 the initial free-surface width. When the 

Froude number is less than 1.3 to 1.5, the bore is undular and no breaking is observed, except possibly next 

to the river banks (Peregrine 1966, Chanson 2010). For Fr1 > 1.4 to 1.6, the leading edge of the bore presents 

a well-defined breaking roller (Hornumg et al. 1995) (Fig. 1). Figure 2 illustrates two breaking tidal bores. 
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In this study, a turbulent event analysis was developed for the highly-unsteady rapidly-varied surge flow 

following Leng et al. (2018) and applied to a breaking bore. The analysis was based upon the definition of 

turbulent bursting events in terms of the instantaneous relative turbulent flux. The method was applied to a 

detailed data set obtained in a large-size physical facility. The results provided insights into the complicated 

transient turbulent flow field beneath a breaking bore relevant to large-scale geophysical systems. 

(a) 

(b)

Figure 1. Breaking bore photographs. (a) breaking tidal bore of the Qiantang River (China) in early 1897 with 
bore propagation from left to right (Photograph by J. Cholnoky, courtesy of Dr Albert Koenig); (b) breaking 
tidal bore of the Sélune River (France) on 24 September 2010 with bore propagation from right to left 
(Photograph by H. Chanson) 

2 PHYSICAL MODELLING 
2.1 Experimental channel 

The physical investigation was conducted at the University of Queensland in a 19 m long 0.7 m wide tilting 

flume, previously used by Leng (2018). The channel was made of glass sidewalls and smooth PVC bed. The 

water discharge was supplied by two pumps, with the maximum discharge of 0.101 m3/s. The water was 

supplied through an upstream intake reservoir equipped with a series of baffles and flow straighteners, issuing 

the water to the flume through a smooth convergent intake. A fast closing Tainter gate was located at the 

downstream end of the channel at x = 18 m, where x is measured from the channel's upstream end (Fig. 1a). 

The Tainter gate was rapidly closed to generate the bore that propagated upstream. The duration of the gate 

closure was less than 0.3 s to minimise any impact of the gate on the bore characteristics. Figure 2 shows a 

photograph and sketch of the experimental apparatus. 

2.2 Instrumentation 
The water discharge was measured by a magneto flow meter with an accuracy of 10-5 m3/s. The free 

surface elevation and fluctuation were measured non-intrusively using nine acoustic displacement meters 

(ADMs) MicrosonicTM Mic+25/IU/TC located along and above the flume (Fig. 2a). In the present study, the 

ADM sampling rate was 200 Hz. 
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(a) 

(b)

Figure 2. Experimental facility. (a) Distorted sketch of the experimental channel, with bore propagation from 
right to left. (b) Side view of a breaking bore propagation from left to right (Flow conditions: Q = 0.099 m3/s, Fr1 
= 2.1, So = 0.0077); note the side-looking ADV head beneath the roller; shutter speed: 1/1,600 s. 

An Acoustic Doppler Velocimetry (ADV) NortekTM Vectrino+ (Serial No. VNO 0436) was used to record the 

instantaneous velocity in steady and unsteady flow conditions. The ADV had a three-dimensional side-looking 

head, as shown in Figure 2b. The ADV was installed at x = 8.5 m. The velocity range was set to be ± 2.5 m/s, 

with a sampling rate of 200 Hz, a transmit length of 0.3 mm and sampling volume of 1.5 mm. In steady flows, 

the ADV data filtering consisted of the removal of communication errors, average SNR less than 5 dB, and 

removal of average correlation less than 0.6. The data were further despiked using a phase-space 

thresholding technique. In the unsteady flow, the data filtering was limited to the removal of communication 

error. 

2.3 Turbulent event analysis 
A turbulent event was defined as a series of turbulent fluctuations that contain more energy than the 

average turbulent fluctuation. In the present study, the detection of the turbulence bursting events was based 

upon the technique of Narasimha et al. (2007). In quasi-steady flows, a turbulent event occurred when the 

absolute value of an instantaneous turbulent flux fluctuation, e.g. q= vxvz, was greater than the product of the 

standard deviation q′ of the flux and a positive constant (Narasimha et al. 2007, Trevethan and Chanson 

2010) (Fig. 3). Figure 3 shows a typical time variation of instantaneous flux fluctuations. In highly-unsteady 

transient flow, a standard deviation would be meaningless. Instead a turbulent event is defined by comparing 

the deviation of an instantaneous flux from its ensemble-median value with the difference between the third 

and first quartile times a threshold constant k: 

75 25q q k (q q )   [2] 

with q  the ensemble-median flux, q75 the third quartile and q25 the first quartile. For a Gaussian distribution of 

the data, (q75-q25) would be equal to 1.3 times the standard deviation. The event duration , defined as the 
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time integral between zero crossings in the flux fluctuation, may be linearly interpolated between a negative 

flux and a positive flux. The dimensionless amplitude A of a turbulent event is the ratio of the averaged flux for 

this event to the mean flux of the entire data set: 

1 q q
A dt

q




  [3] 

The relative contribution of an event to the total momentum flux of the data section is termed as the 

relative magnitude m defined as: 

A
m

T




[4] 

Figure 3. Turbulent flux event definitions in terms of the tangential stress vxvz for 33.28 s < t < 33.4 s. Record 
showing three positive events and three negative events - Flow conditions: Q = 0.099 m3/s, So = 0.0077, x = 
8.5 m, z/d1 = 0.13, y/B = 0.5.  

Past field works (Narasimha et al. 2007, Trevethan and Chanson 2010, Leng and Chanson 2018) used a 

threshold constant k = 0.77 (i.e. k=1/1.3). In steady flows, a sensitivity analysis was performed at a vertical 

location z/d1 = 0.13 in terms of the turbulent fluxes vxvz and vxvy for 0 < k < 1.54. The results data showed a 

decreasing number of turbulent events with increasing the threshold constant k, with a large negative gradient 

for k < 0.77, which might be related to some electronic noise in the instrumentation. Both the median event 

duration, the dimensionless event amplitude and relative event magnitude increased with increasing threshold 

constant, regardless of the turbulent flux and the events. All the data showed larger gradients for k < 0.77, 

than for threshold constant k  0.77. The finding hinted that a high values of k would filter out a large amount 

of small-duration turbulent events. The effects of the threshold constant were also tested in terms of the first 

four statistic moments of the turbulent event duration, amplitude and magnitude at a vertical location (z/d1 = 

0.13). Fluctuating data were observed for k < 0.15, with monotonic data trends for k > 0.15. In summary, the 

sensitivity analysis in steady flow implied that any value within 0.77  k < 1.54 could be suitable. k = 0.77 was 

adopted herein. 

In unsteady flows corresponding to a breaking bore, the transient flow motion consisted of two distinctive 

consecutive sequences: a rapid deceleration and an early flood flow immediately after the bore passage. A 

sensitivity analysis was similarly conducted in terms the threshold constant k in the deceleration and early 

flood flow sequence for 0 < k < 1.92. Figure 4 presents typical results for the deceleration phase (Fig. 4 Left) 

and early flood flow (Fig. 4 Right). With increasing threshold constant, the number of unsteady turbulent 

events per second decreased dramatically when k < 1, tending to some asymptote for k >1. The data showed 

a marked increase of unsteady turbulent event duration with increasing k for k < 1, with an almost constant 

trend for k > 1. The unsteady turbulent event amplitude and magnitude data showed symmetrical distributions 
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of positive and negative events about x-axis, and an increase in absolute values with increasing k. The 

statistical properties of the event amplitude and magnitude were further analysed. Overall, a value k = 1 was 

adopted in unsteady bore flow. 
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Figure 4. Effect of the event threshold constant k on the ensemble-median turbulent event characteristics 
during the deceleration (Left) and early flood flow (Right) - Flow conditions: Q = 0.099 m3/s, x = 8.5 m, z/d1 = 
0.067, y/B = 0.5, Fr1 = 2.1. 

2.4 Experimental programme 
In the present study, a series of experiments were conducted systematically, with a focus on the free-

surface measurement, unsteady velocity characteristics and turbulent event properties. The initial flow 

condition were a flow rate Q = 0.099 m3/s, an initial depth d1 = 0.09, with a bed slope So = 0.0077. A breaking 

bore was generated by closing rapidly and completely the Tainter gate. The bore propagated upstream with a 

celerity U = 0.6 m/s, corresponding to a bore Froude number Fr1 = 2.1. 

Both ADM and ADV units were sampled synchronously. All runs were synchronised using an ADM located

immediately downstream of the gate, setting t = 0 at the date closure. To capture the unsteady nature of the
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turbulent flow, the experiments were designed to be highly repeatable, enabling an ensemble-averaged data 

analysis. The experiments were repeated 25 times and the results were ensemble-averaged. 

3 FREE-SURFACE AND VELOCITY MEASUREMENTS 

The propagation of breaking bores was a highly turbulent, three-dimensional process. The rapid gate 

closure induced a violent bore generation, with water piling up against the closed Tainter gate. The process 

was highly turbulent with intense aeration. Once formed, the bore initially accelerated, before decelerating 

until it reached a quasi-constant celerity U. At the sampling location (x = 8.5m), the bore was fully-breaking. 

The leading edge of the bore was a breaking roller, characterised by a sudden increase in flow depth, 

intensive air entrainment and strong turbulence mixing. The water surface ahead of the roller was flat and the 

passage of the roller induced a marked discontinuity in the water elevation (Fig. 2b). 

With the passage of the bore, the ensemble-averaged longitudinal velocity data showed a marked 

deceleration for all the locations, and negative longitudinal velocities observed at in the end of deceleration 

process at the vertical locations near the channel bed (z/d1 = 0.067 and 0.13), indicating transient recirculation 

next to the channel bed (Fig. 5a). This flow reversal motion was consistent with previous field works, 

experimental and numerical studies (Chanson and Toi 2015, Leng 2018). Both the transverse and vertical 

velocity data fluctuated about zero value in the steady flow, and they presented large fluctuations during and 

after the passage of the breaking roller (Fig. 5b). This finding hinted the occurrence of large vortical structure 

in the longitudinal or vertical directions. Next to the free-surface (z/d1 = 0.91), the vertical velocity data showed 

a sharp and short increase during the passage of the breaking roller toe, linked to the streamline curvature 

(Leng and Chanson 2016). 

The instantaneous velocity fluctuations V75-25 were defined as the difference between the third and first 

quartile: V75-25 = (V75-V25). All the data showed a sharp increase in velocity fluctuations during the bore 

passage, for all three velocity components, at all elevations and at all transverse locations. Figure 6 presents 

typical experimental data. The largest velocity fluctuations were observed at the lowest and highest sampling 

locations, z/d1 = 0.067 and 0.91 respectively.  

A comparison of velocity and velocity fluctuations performed at several transverse locations was 

conducted for y/B = 0.50, 0.70, 0.91 and 0.96, with y the transverse distance from the right sidewall. Overall, 

the data showed consistent trends in terms of the longitudinal velocity before and after the passage of 

breaking bores. Stronger transient recirculation was observed next the sidewall (y/d1 = 0.91 and 0.96), marked 

by the pronounced negative longitudinal velocity at the end of deceleration process. The transverse velocity 

data showed a different trend next to the sidewall (y/d1 = 0.91 and 0.96) (Fig. 5b). The velocity fluctuation data 

showed pronounced peaks during the passage of breaking bores at all transverse locations, although possibly 

larger next to the sidewall. 

4 UNSTEADY TURBULENT EVENTS RESULTS 

During the passage of the breaking bore, the rapid increase in water level induced a major change in both 

longitudinal and vertical velocity fields. Figure 7 presents unsteady turbulent event data in terms of the 

turbulent fluxes vxvz and vxvy on the channel centreline. The results showed consistent numbers of events per 

second between the two different flow phases. The duration of the vxvz events were larger than the duration of 

vxvy events. Figures 7c and 7d presented the median values of total event duration, positive event duration 

and negative event duration respectively. For a given turbulent flux v ivj, the duration of the deceleration phase 

were slightly larger than the event duration during the early flood flow, and the large number of events 

corresponded to small event durations. The data in terms of the unsteady event amplitude and relative 

magnitude for the positive event and negative events showed a quasi-symmetrical distribution about zero 

amplitude, indicating similar fluctuation behaviour between positive and negative events. For a given turbulent 

flux, the amplitude of the deceleration process was significantly larger than the amplitude of the early flood 

flow phase. For a given flow condition, the amplitude of vxvy were relatively higher than vxvz, implying a more 

intense turbulent process in the x-y plane. The relative magnitude data showed that the values during the 

deceleration phase were significantly higher than during the early flood flow motion, suggesting that the 

unsteady turbulent events had a major contribution to the total turbulent flux. 
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Figure 5. Dimensionless time variations of ensemble-averaged velocity in the longitudinal (A) and transverse 
(B) directions during the breaking bore passage at four transverse locations, with ensemble-averaged water
depth measured at the velocity sampling location x = 8.5 m - Flow conditions: Q = 0.099 m3/s, x = 8.5 m, z/d1

= 0.013, y/B = 0.50, 0.70, 0.91, 0.96, Fr1 = 2.1.

A comparison study of the unsteady turbulent event analysis at the vertical location y/d1 = 0.13 was 

conducted for different transverse locations. The results showed transverse variations in turbulent event 

characteristics, without definite trend. The transverse fluctuations might reflect the three-dimensional nature of 

the bore roller, with the existence of transverse vortical structures discussed by Leng and Chanson (2015) and 

Chanson (2016).  

Typical PDFs of instantaneous unsteady turbulent event duration and amplitude are presented in Figure 8 

for the steady flow, deceleration phase and early flood flow. The data showed a right skewed distribution of 

the unsteady event duration, with majority of the data ranging from 0.005s to 0.06 s (Fig. 8a). The PDFs of 

event amplitude exhibit a quasi-symmetrical distribution in terms of zero value (Fig. 8b). 

5 CONCLUSIONS 

A physical study of breaking bore was undertaken in a large-size facility. The bore front was characterised 

by a discontinuity in water elevation, strong air entrainment and intense turbulence with large-scale three-

dimensional coherent structures. The experiments were repeated systematically to derive the instantaneous 

ensemble-averaged flow properties. The free-surface and velocity measurements were performed using 

acoustic displacement meters (ADMs) and an Acoustic Doppler Velocimetry (ADV) at relatively high temporal 

resolution (200 Hz).The ensemble-averaged results showed an increase in the water depth and rapid decay in 

the longitudinal velocity during the bore passage. The comparison of velocity and velocity fluctuations at 

several transverse locations suggested stronger transient recirculation, more fluctuated transverse velocity 

and larger peak value of velocity fluctuations next to the sidewall.  
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A turbulent event analysis was developed for the transient flow. The sensitivity analysis of the threshold 

constant k suggested a value k = 1 in the unsteady bore flow. The unsteady turbulent event results showed 

that for a given turbulent flux vivj, the deceleration phase experienced larger event duration, amplitude and 

relative magnitude than the early flood flow phase, indicating a more intense bursting process during the flow 

deceleration. The unsteady event amplitude and relative magnitude exhibited a quasi-symmetrical 

distributions about the horizontal axis. Larger value of the turbulent flux vxvz implied a more intense turbulent 

process in the x-y plane. The majority of turbulent events had a duration between 0.005 to 0.06 s, with the 

absolute value of the event amplitude mainly less than 6. Overall, the results showed that the turbulent event 

analysis provided valuable quantitative details into the turbulent bursts that are responsible for major mixing 

and sedimentary processes. 
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Figure 7. Vertical distributions of ensemble-median values of unsteady turbulent event properties during
deceleration and early flood flow phases on the channel centerline - Flow conditions: Q = 0.099 m3/s, x = 8.5 
m, Fr1 = 2.1, y/B = 0.50. 
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