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A B S T R A C T   

Robust estimators are parameters insensitive to the presence of outliers. However, they presume the shape of the 
variables’ probability density function. This study exemplifies the sensitivity of turbulent quantities to the use of 
classic and robust estimators and the presence of outliers in turbulent flow depth time series. A wide range of 
turbulence quantities was analysed based upon a stepped spillway case study, using flow depths sampled with 
Acoustic Displacement Meters as the flow variable of interest. The studied parameters include: the expected free 
surface level, the expected fluctuation intensity, the depth skewness, the autocorrelation timescales, the vertical 
velocity fluctuation intensity, the perturbations celerity and the one-dimensional free surface turbulence spec-
trum. Three levels of filtering were utilised prior to applying classic and robust estimators, showing that com-
parable robustness can be obtained either using classic estimators together with an intermediate filtering 
technique or using robust estimators instead, without any filtering technique.   
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1. Introduction 

Numerous studies have been conducted in the past decades aiming to 
determine different turbulence properties of the free surface. The main 
focus has been put on linking free surface dynamics to the hydrody-
namics underneath [9,14,17] whereas other studies have tried to 
address the changes that the free surface impose on the surrounding 
turbulence [12,16,29]. In the extreme event of air-water flows, turbu-
lence has a dominant role on the free surface break-up [3] and, in the 
specific case of supercritical flows, the free surface deforms throughout 
the streamwise direction [11,19,22], and transverse direction [6], 
reaching unstable configurations, which have been suggested to lead to 

self-aeration [32,34]. 
For spillway flows, different instrumentations have been used to 

obtain characteristic water levels, including point gauges [21], imaging 
techniques [4,38]; [41]), acoustic displacement meters [4,11,33,38], 
phase detection probes [22,30,31,38] and, more recently, Light Detec-
tion and Ranging (LiDAR) systems [19]. Other experimental studies 
have used wire gauges to depict turbulent free surface dynamics, see for 
instance the hydraulic jump analysis of Mouaze et al. [23] and Murzyn 
et al. [25]. Other examples of non-intrusive techniques for turbulent free 
surface characterisation include works of Murzyn and Chanson [24] and 
Chachereau and Chanson [6]. However, little attention has been put to 
data filtering although the recordings can include numerous outliers due 
to faulty signals resulting from challenging flow conditions. Most studies 
have used the raw data, sampled data without voltage range ends, or 
data within the bounds defined at +/− 3 standard deviations from the 
mean. Commonly studied flow quantities include mean/median and 
standard deviation, as well as correlation timescales. 

With increasing interest on the water surface dynamics, the focus 
should be placed on its accurate experimental determination. Different 
methods can be used to describe the free surface, which can be grouped 
into:  

1. Use of classic estimators (e.g., mean, standard deviation, and others). 
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2. Use of robust estimators (e.g., median, median absolute deviation, 
and others). 

Traditionally, classic estimators have been the default choice. These 
statistical methods are best for opportune situations where raw data 
perfectly match physical characteristics. Nonetheless, true data are 
commonly contaminated by errors inherent to any experimental meth-
odology, and filtering should be prescribed to reduce the impact on the 
turbulence estimations. Alternatively, robust estimators can be used; 
understanding “robust” or resistant as the characteristic to be affected 
only to a limited extent by a number of gross errors [15]. This is ach-
ieved when a small subset of the sample cannot have a disproportionate 
effect on the estimate. In turn, the robust estimators may not be 
distribution-free estimators, although they are best for a broad range of 
situations, tolerate a large quantity of outliers mixed within the data 
sample (up the breakdown point) without resulting in a meaningless 
estimate, and perform superiorly even for small data samples [15]. 

A simple example can be presented through the estimation of the 
expected value of a variable. As a dataset contains outliers, the use of the 
mean (classic) estimator should be preceded by a filtering step. Other-
wise, a median (robust) estimator can be used, being more insensitive to 
the presence of outliers. When outliers are obvious, they can still be 
removed, but accurate determination of the expected value does not 
strongly rely on the adequacy of the filtering technique. 

This work explores the aforementioned dual data analysis by 
studying different combinations of filtering techniques and classic/ 
robust estimators for an extremely turbulent flow case: the turbulent 
free surface in the non-aerated region over a stepped spillway (intro-
duced in Section 2). Robust estimators, mainly based on the simple 
concept of median and data ranking, are proposed in Section 3 for a wide 
range of turbulence properties, namely: the expected free surface level, 
the expected fluctuation intensity, the depth skewness, the 

autocorrelation timescales, the vertical velocity fluctuation intensity, 
the perturbations celerity and the one-dimensional free surface turbu-
lence spectrum. Alternatively, three filtering techniques based upon 
well-stablished works [13,35] are presented in Section 4. These three 
techniques present gradually increasing intricacy, naturally encom-
passed by higher rejection rates. Section 5 analyses the combination of 
classic and robust estimators with the proposed filtering techniques for 
different turbulence quantities of the turbulent free surface over a 
stepped spillway. Results discussion and final conclusions are presented 
in Sections 6 and 7, respectively. 

2. Experimental setup 

2.1. Geometry 

The present study focuses on the non-aerated region of a stepped 
spillway model of 45◦ slope (1V:1H) located at The University of 
Queensland. The stepped spillway has a wide inlet basin (5 m wide, 2 m 
long) which ensures smooth inlet conditions, leading to a broad crested 
weir (0.60 m long, 0.985 m wide) which conveys the flow into the 
stepped spillway (same width) composed of steps of height h = 0.10 m. 
The water discharge is estimated using a previously obtained experi-
mental discharge relationship based on detailed velocity measurements. 
A thorough description of this spillway geometry, and other flow vari-
ables, can be found in Zhang and Chanson [37]. The experimental setup 
is shown in Fig. 1. 

2.2. Instrumentation 

Instantaneous free surface measurements were sampled with three 
microsonic™ Acoustic Displacement Meter (ADM) mic+25/IU/TC. The 
measuring range recommended by the manufacturer is 30–250 mm. The 

Notation 

ADM Acoustic Displacement Meter 
DVED Depth-Velocity Elliptical Despiking 
d Flow depth time series (m) 
d Mean flow depth (m) 
d̃ Median flow depth (m) 
d′ Flow depth expected deviation (m) 
d′ Flow depth standard deviation (m) 
d̃′ Flow depth robust standard deviation (k MAD(d)) (m) 
˜dI

′ Flow depth interquartile range (m) 
˜dn

′ Flow depth relative to percentile nth (m) 
d′′ Flow depth expected skewness (− ) 
d̃′′ Flow depth quartile coefficient of skewness (− ) 
Eηη One-dimensional flow depth spectra (m2s− 1) 
Eηη One-dimensional flow depth spectra, classic determination 

(m2s− 1) 
Ẽηη One-dimensional flow depth spectra, robust determination 

(m2s− 1) 
f Frequency (s− 1) 
k Relation between the Standard Deviation and the Median 

of the Absolute Deviation 
LUV Lower and Upper Voltage 
MAD Median Absolute Deviation 
MED Median 
N Number of data points (− ) 
PMF Probability Mass Function 
Rmax Maximum cross-correlation, obtained using classic 

correlation (− ) 
˜Rmax Maximum cross-correlation, obtained using Spearman’s 

rank correlation (− ) 
Rηη Autocorrelation function for η (− ) 
Rηη Classic autocorrelation function for η (− ) 
R̃ηη Autocorrelation function for η by means of Spearman’s 

rank correlation (− ) 
ROC Robust Outlier Cutoff 
STD Standard Deviation 
Tηη Turbulent timescale for the free surface fluctuation (s) 
Tηη Turbulent timescale for the free surface fluctuation 

obtained using the Pearson’s product moment correlation 
(s) 

T̃ηη Turbulent timescale for the free surface fluctuation 
obtained using the Spearman’s rank correlation (s) 

t Time (s) 
u Ranked vector (− ) 
vs Vertical velocity of the free surface (ms− 1) 
vs

′ Vertical velocity standard deviation (ms− 1) 
vs

′ Vertical velocity standard deviation (ms− 1) 
ṽs

′ Vertical velocity robust standard deviation (k MAD(vs)) 
(ms− 1) 

w Ranked vector (− ) 
x Auxiliary vector (− ) 
z Auxiliary vector (− ) 
η Time series for the deviation from the median flow depth 

(m). 
λu Universal threshold (− )  
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near field of the ADM sensors was enclosed with PVC cylinders of the 
same diameter to prevent the wetting of the sensors. This artefact did not 
alter the sensors’ output signal, as shown by Kramer and Chanson [18]. 

The ADM sensors provide a voltage time series that can be correlated 
to a distance in order to estimate a water level. The three ADM sensors 
were calibrated over a distance range covering the expected water 
depths to be measured. Calibration was conducted by recording during 
300 s at 100 Hz for 11 different distance levels, which covered the range 
of expected flow depths. Fig. 2a shows that calibration exhibited a linear 
relation over the entire sampled range (note that different placement of 
the sensors yield different voltage-depth relationships) and Fig. 2b that 
the Standard Deviation (STD) of each calibration step remained close to 
0.10 mm, computed from the voltage STD and using the obtained cali-
bration curve, which matches the accuracy specified by the sensors 
manufacturer. 

2.3. Measurement location and flow conditions 

The ADM 1 was located at a fixed position over the crest, 0.17 m 
upstream over the downstream edge of the broad crest (step 0, Fig. 1b). 
The other two sensors (ADM 2 and ADM 3) were located over the 
stepped geometry separated by 0.141 m in the longitudinal direction, 
thus coinciding with one cavity length. Keeping a constant distance 
between both sensors, ADM 2 and ADM 3 were placed above the pseu-
dobottom (formed by the step edges, Fig. 1b), allowing the measurement 
of the flow depths at different spillway locations. Recordings were 
conducted at the step edges (steps 0 – VII) and above the step cavities 
(mid distance between the step edges), as marked in Fig. 1. Each 

recording was conducted at a sampling rate of 100 Hz during 600 s. The 
total time recorded and the distribution of the measurements over the 
spillways is shown in Fig. 3. Differences of sampling time are due to two 
reasons: overlapping of measurement locations as the ADM sensors were 
moved downstream; and repetition of some measurements at locations 
where the free surface was highly roughened due to turbulence. The 
inception point of air entrainment is marked for each investigated 
discharge (dc/h = 0.9, 1.1, 1.3, 1.5, 1.7, 1.9 and 2.1, with dc the critical 
depth) according to the visual observations of Zhang and Chanson [37]. 
For reference, the empirical formulas of Meireles et al. [22] and Chanson 
et al. [8] are included. Precisely, all the measurements fall within the 
non-aerated region, where the flow gradually roughens as the flow be-
comes more turbulent up to break up [34]. 

Fig. 1. Stepped spillway model. (a) Image taken at 1/1000 shutter speed, processed with contrast-limited adaptive histogram equalization to enhance the char-
acteristic free surface perturbations and air entrainment after step IV. (b) Sketch of the experimental setup (rotated 45◦ counterclockwise), steps numbering, sensors 
measurements location (- -), pseudobottom and parallel axis (). Flow from left to right. 

Fig. 2. ADM performances. (a) ADM calibration curves (mean flow depth d and corresponding mean voltage level) and (b) Depth fluctuation d′ for static mea-
surements (noise level) corresponding to each mean flow depth level measured during the ADM calibration curve determination. ‘Resolution’ specified by sensors’ 
manufacturer. 

Fig. 3. Measurements distribution and sampled time for the studied flow 
conditions. Visual observation of the inception point location [37] and empir-
ical formulas of Meireles et al. [22] and Chanson et al. [8]. 
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3. Robust estimators 

The use of estimators insensitive to the presence of outliers can yield 
more reliable turbulence predictions, hence alleviating the re-
sponsibility often relying solely on the filtering techniques. In the 
following, the estimators corresponding to classic statistic techniques 
are presented overlined (e.g., d) whereas the robust counterpart is pre-
sented with a tilde (e.g., d̃). 

3.1. Expected value and fluctuation 

The expected value of a variable (E[ ⋅]) is the first variable of interest 
in any data analysis. For the case of the flow depths, it is often estimated 
by using the mean (d), defined as the ensemble average of all the samples 
in the filtered signal: 

E[d] : = d =
1
N

∑N

i=1
di (1)  

with N the total number of flow depth measurements. Deviations from 
the expected value of a variable can also be of interest, as they are 
associated to turbulence and dispersion, and can be studied on the basis 
of: 

η= d − E[d] (2) 

By definition, E[η] = 0 and it is more frequent to study the expected 
value of the squared fluctuation instead. An estimation of the dispersion 
of the data can be done by means of the sample standard deviation (STD) 
as: 

̅̅̅̅̅̅̅̅̅̅
E[η2]

√
: = d′

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
di − d

)2

N − 1

√
√
√
√

(3) 

The STD approximates the population variance using the squared 
value of each sample deviation, thus endorsing bigger weight to the 
outliers which depart significantly from the expected value of the series. 
The mean value can be affected by the presence of outliers as well but, 
when equally distributed around the mean, their contribution to Eq. (1) 
would balance. Alternatively, the median (MED) and the Median Ab-
solute Deviation (MAD) can be used as estimators of location and vari-
ance, being both robust estimators against outliers with a breakdown 
point of 50% (i.e., 50% of contaminated data is necessary to force the 
estimator to result in a false output) as opposed to the counterpart mean 
and standard deviation, which hold a 0% breakdown point. It is note-
worthy that the median is the location estimator that presents the 
highest breakdown point [20] and is defined as the value separating the 
greater and lesser halves of the series. Hence, a robust estimator for the 
expected value is herein proposed directly through the median operator 
d̃ = MED(d). Similarly, the MAD represents the best robust scale esti-
mator, even more than the interquartile range that remains at a 25% 
breakdown point [20,27]. 

The MAD can be obtained by sorting the absolute value of the re-
siduals around the MED and selecting the value corresponding to the 
50%. Nonetheless, it is implemented in many commonly used numerical 
libraries (e.g., MATLAB®, R programming language or Python 2.7 
together with the statsmodels library, being the latter combination the 
one used in this study). The MAD of the sampled flow depth can be 
related to the standard deviation of different probability density func-
tions as [27]: 

d̃′
= k MAD(d)= k MED(|η|) (4)  

being k a coefficient related to the sample distribution. When a Gaussian 
behaviour is assumed, k takes the value [27]: 

k = 1.483 (5) 

Another estimation of the flow depth variance can be obtained 

through the interquartile range ˜dI
′

= d̃75 − d̃25, being d̃75 and d̃25 the 
depth levels representing the 75th and 25th percentiles, respectively. 
This estimator presents a lower breakdown point than the MAD, there-
fore being more sensitive to the presence of outliers. 

3.2. Skewness 

Higher order statistics can be computed to study the shape of the free 
surface waves. With increasing order, the exponent weighting the out-
liers is also incremented although for even order numbers some posi-
tively and negatively deviated outliers could balance. 

The flow depth skewness (d′′) can be defined as. 

d′′ =
1
N

∑N

i=1

(
di − d

d′

)3

(6) 

This descriptive statistic is a dimensionless measure of the lack of 
symmetry. Following the robust estimators defined for first and second 
order statistics, quartiles information can be used to define a robust 
estimator for the skewness [39]: 

d̃′′ =
d̃75 − 2 d̃ + d̃25

˜dI
′

(7) 

The parameter d̃′′ is the so-called quartile coefficient of skewness 
[39]. 

3.3. Autocorrelation timescales 

The cross-correlation function between two series (x and z) can be 
computed as: 

Rxz(τ)=
cov(x, z(τ))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
[
(x − E[x])2]

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
[
(z(τ) − E[z])2]

√ (8)  

being cov the covariance and τ the lag time. Efficient computation of the 
covariance for long samples can be achieved through fast Fourier 
transformation. Note that some terms of Eq. (8) can be rewritten using 
classic estimators as: 

Rxz(τ)=
cov(x, z(τ))

x′ z’(τ)
(9) 

An alternative, nonparametric form of the correlation can be defined 
by means of the Spearman’s correlation. For this purpose, both x and z 
are ranked separately from smallest to largest values, assigning the mean 
rank when equal values occur. Let ui and wi take the rank of the ith 

observation in x and z, respectively. Spearman’s rank correlation of x 
and z can then be computed as [39]: 

R̃xz(τ)= Ruw(τ)=
cov(u, w(τ))

u′ w’(τ)
(10) 

The use of the ranked data has the advantage that it allows compu-
tation of the correlation between both trends without strongly depend-
ing upon the current value of each measurement. This alternative 
correlation does not considerably slow down the computation as the 
ranking of the vectors can be done with efficient sorting algorithms and, 
afterwards, the sorted data can be correlated as per the original vectors. 
Spearman’s correlation is the nonparametric version of the Pearson 
correlation coefficient, which makes its computation more robust to 
outliers. 

Cross-correlation function can be used to obtain the most probable 
lag between two time series [= argmax(Rxz)] or to obtain the autocor-
relation function (Rxx), that allows extraction of turbulent scales and 
spectrum. A timescale (Tηη) for the flow depth fluctuations can be 
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obtained by integrating its autocorrelation function (Rηη) up to the first 
zero-crossing point: 

Tηη =

∫τ=τ(Rηη=0)

0

Rηη(τ) dτ (11) 

Depending on how the autocorrelation function is computed (Eq. (9) 
or 10), a classic estimation of the turbulent timescale (Tηη) could be 
carried out through Rηη or, an alternative, robust turbulent timescale 
(T̃ηη) could be computed through R̃ηη. 

3.4. Cross-correlation peak and wave celerity 

Given that two ADMs are placed in series (ADM 2 and ADM 3), their 
signals can be cross-correlated allowing estimation of the most probable 
time lag. When the distance between the synchronized sensors is known, 
the celerity of the free surface perturbations can be estimated. Both the 
classic correlation (Eq. 9) and the Spearman’s correlation (Eq. 10) can be 
used to compute the cross-correlation and, hence, estimate the waves’ 
celerity (c and c̃, respectively). 

3.5. One-dimensional flow depth spectrum 

The one-dimensional spectrum has been traditionally computed for 
velocity time series. It allows insight into the flow structure and the 
energy distribution for different wavelengths (i.e., different eddy sizes). 
In this study, the one-dimensional spectrum, as defined by Pope [26]; is 
proposed for the flow depth fluctuation: 

Eηη(f )=
2
π E
[
η2]
∫∞

0

Rηη(s) cos(f s) ds (12) 

Both E[η2] and Rηη can be estimated either in a classic (Eqs. 3 and 9) or 
a robust manner (Eqs. 4 and 10), thus leading to a standard (Eηη) or 
robust (Ẽηη) estimation of the one-dimensional depth fluctuation 
spectrum. 

4. Data filtering 

A data point is oftentimes labelled as an outlier when it lies at an 
abnormal distance from other values of a certain population. Nonethe-
less, for any observation far from the group, there is a positive (despite 
small) possibility to occur and thus the crux is on identifying these 
outliers without losing true information from the population [1]. 
Doubtful or anomalous values can come from a mixed sample of a 
different population or erroneous measurements. It is also important to 

understand how outliers are physically generated to understand their 
likelihood of occurrence. 

4.1. Lower and upper voltage (LUV) 

When an ADM pulse-echo is lost, the sensor is incapable of gener-
ating a proper estimation of the free surface position. The voltage pro-
vided for these lost echoes usually piles at the highest or lowest voltages, 
far away from the voltage values corresponding to realistic depths. It is 
therefore convenient to locate the sensor so that the measurements are 
contained in a region of interest far from the extreme voltage values. A 
first filtering approach could be to simply remove values below and 
above 5% and 95% from the total voltage range of the ADM. This double 
threshold filtering technique is based on a physical observation. For the 
ADM model used in this study, the voltage filtering levels correspond to 
0.5 V and 9.50 V respectively (Fig. 4a). 

4.2. Robust outlier cutoff (ROC) 

Outliers depart from the expected estimation of the flow depth, but 
do not necessarily accumulate out of the LUV bounds. The Probability 
Mass Function (PMF) shows that some erroneous measurements run 
together at different voltage levels. A quick flow observation indicates 
that these voltage values, associated to different water levels, are not 
physically meaningful and the introduction of narrower bounds arises as 
a preferred alternative than LUV filtering. 

A commonly used technique is to estimate the variance of the sam-
ple, by means of the STD, to establish the filtering bounds around a 
certain number of STD away from the mean. An alternative way to es-
timate variance can be done through robust estimators, as presented in 
Eq. (4). Difference between normal and robust estimators can be well- 
perceived in Fig. 4b, where a Gaussian function is fitted using the 
location and variance obtained with the classic estimators (mean and 
STD) and through the robust estimators (MED and MAD). Fig. 4b also 
shows a small proportion of outliers piling up at different voltage levels, 
which are readily observable when using a vertical log-scale. 

On the question of how many standard deviations are necessary to be 
accounted for to make sure that “good data” is not filtered out, the 
universal threshold represents a conservative estimator. It can be 
expressed as [13]: 

λu =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 ln(N)

√
(13)  

with N the total number of data points of the sample. Use of the universal 
threshold yields bounds wide enough to avoid filtering out good data, 
even if the underlying distribution is slightly skewed, but (usually) 
narrower bounds than those proposed by the LUV technique. If the final 

Fig. 4. First 600 s of voltage signal of ADM 3, dc/h = 2.1 and step V. The number of outliers removed using LUV technique corresponds to 1.3% of the total number 
of samples. (a) Sensor’s signal (temporal series); (b) voltage levels distribution and Gaussian fit using classic (normal) and robust estimators. 
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distribution is markedly skewed, MAD can be estimated for both positive 
and negative deviations departing from the MED value and, conse-
quently, different filtering thresholds could be defined for positive and 
negative deviations. 

4.3. Depth-velocity elliptical despiking (DVED) 

One step further on the filtering of the flow depth time series could 
be conducted using the finite differences of η and its variance, following 
Goring and Nikora [13] method for velocity data. Provided that an ADM 
can measure the time series of flow depth, a vertical velocity (vs) can be 
estimated by using the central finite difference: 

vs ≡
∂ d
∂ t

=
∂ η
∂ t

≈
Δηj

Δtj
=

ηj+1 − ηj− 1

tj+1 − tj− 1
(14) 

For the data at the beginning and ending of the sample, backward or 
forward differences can be taken by simply using j instead of j+ 1 or j− 1 
at the right-hand side term of Eq. (14). 

For η, maximum and minimum thresholds can be established based 
on Eqs. (3) and (14) for vs as well. This approach is a simplified version 
of the work of Goring and Nikora [13] and Wahl [35]; which extended 
the analysis up to the second derivative of the variable under analysis. It 
must be noted that the filtered data could still produce unrealistic ver-
tical velocities, because some depth outliers could randomly fall inside 
the bounds defined by the ROC technique, hence remaining undetected. 

Goring and Nikora [13] proposed ellipsoid-type bounds based on the 
observation that “good data” tend to cluster together forming this shape. 
In this study, the 2D PMF for η and vs of the data was analysed and 
similar clustering forms were recognized. For conciseness, only the 2D 
PMF of the data previously shown in Fig. 4a and 4b is presented in Fig. 5. 
The isoprobability contours (points with same probability of occur-
rence) appear to take the form of ellipse-like curves. Accounting for the 
universal threshold as a situation of equal likelihood of appearance, the 
hypothesis of Goring and Nikora [13] remains consistent for flow depths 
measurements. Thus, the filtering bounds can be finally expressed as: 

( η
MAD(η)

)2
+

(
vs

MAD(vs)

)2

≤ (λu k )
2 (15) 

Equation (15) reduces to the ROC filtering when the second term of 
the left-hand side is neglected. 

4.4. Practical implementation considerations 

The three proposed filtering methods correspond to: one physically 
based filtering (LUV), and two statistical techniques (ROC and DVED). 
The ROC and DVED algorithms produce upper and lower bounds based 
on the percentiles of the sampled data, while the LUV method defines 
bounds based on the physical observation that extremely high and low 
voltages correspond to lost echoes. Thus, LUV can be complementary to 
ROC and DVED techniques under certain conditions. An example can be 
given by a recording for which the free surface is considerably sloped 
relative to the axis of the ADM resulting on more than 50% of erroneous 
data. In such case, most measurements would fall close to 10 V and the 
application of ROC or DVED alone would not result in adequate iden-
tification of the outliers. Hence, it is proposed that, after applying ROC 
and DVED, the LUV technique should be used to avoid accepting erro-
neous data. In the following, any result presented for ROC and DVED 
techniques has been also filtered using LUV afterwards. Additionally, if a 
filtering technique flagged more than 50% as invalid data, the recording 
was dismissed and not accounted for in the subsequent analysis. 

When an outlier is detected by any of the presented filtering 
methods, it can be simply deleted or replaced. The most basic method 
would consider the removal of the outlier. The outlier could also be 
substituted by the average or the median of the entire signal, which 
would imply that the value replacing the outlier simply takes the “ex-
pected” value of the signal. Nonetheless, this can create fast gradients 
which were not contained in the original signal and, it could consider-
ably affect the latter computed statistical estimators (e.g., by reducing 
the STD). Another alternative would be using the neighbouring value 
(sample-and-hold), which presents certain advantages when it comes to 
spectral representation [28]; [40]). In this study, it is proposed to sub-
stitute the outliers by linear interpolation between their surrounding 
points. It must be noted that linear interpolation replacement strategy 
can affect slopes of a power spectrum. Higher order polynomials could 
lead to new spikes [5]. More complex methodologies could be proposed 
to generate the outlier replacement. Herein, linear interpolation is 
adopted given that it is the most commonly used approach. 

5. Results 

5.1. Rejection rate 

The three proposed filtering techniques were applied to the data 
presented in Fig. 3, obtaining different rates of rejection for different 
measuring locations (see Fig. 6 and Table 1). Fig. 6 shows that large 
percentages of data were rejected close to the spillway crest (step 0), 
where free surface bends following the chute axis at the transition from 
the broad crested weir to the spillway (Fig. 1). This can be explained by 
the inclination of the detection zone axis of the ADM with respect to the 
normal to the free surface [38]. These large rejection rates close to the 
first step were obtained for all discharges, indistinctly of the filtering 
technique. 

With increasing discharge, the flow depth becomes more parallel to 
the pseudobottom, as opposed to the flow depth curvatures that 
encompass the step edges that are observed for the lower discharges. 
Hence, the free surface tends to be closer to the axis of the ADM 
measuring cone at large discharges and fewer outliers can be expected. 
Close to the inception point of air entrainment, the free surface 
considerably roughens with dynamic interfacial processes [7,34] and its 
dynamic determination can be more challenging for the ADM sensors, 
consequently resulting in a local increase of the outliers contained in the 
recorded dataset. 

Generally, no major change in the amount of rejected data occurred 
when applying the ROC technique compared to the LUV method, but 
approximately twice more data was removed when applying the DVED 
technique (see Table 1). 

Fig. 5. Probability Mass Function (PMF) of the data shown in Fig. 4.  
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5.2. Expected value of the flow depth and its fluctuation 

The first analysed variable corresponds to the expected value of the 
flow depth. A similar prediction with the mean estimator (Eq. 1) is ob-
tained independently of the filtering method used. Positive and negative 
deviations compensate, resulting in a negligible effect on the mean 
estimation for almost all the data. For the median estimator, all data 
points yield an exact same estimation, independently of the filtering 
technique used. Consequently, both mean and median estimators can 
provide with accurate values of the expected flow depth regardless of 
the filtering technique. 

In terms of the mean fluctuation of the flow depth (Eq. 3), a 

significant deviation from the prediction of d′ is obtained by using the 
filtered data series using the LUV method as well as the method using the 
filtered data series of the ROC and the DVED methods (Fig. 7a). In 
Fig. 7a, both the ROC and the DVED filtered data converged to similar 
values, with differences below 10%. It is then proposed that when 
studying the depth variance, at least the ROC method should be used, 
instead of the LUV method, to avoid incorporating outliers as an 
unphysically higher turbulence level. An alternative approach, if the 
analysis is just restricted to mean and mean fluctuation levels, is to filter 
the data using the LUV method but taking advantage from the robust 
behaviour of the MAD estimator (Eq. 4) to approximate the samples’ 
expected fluctuation. In such case, comparison of d̃′ estimation between 
the LUV and the DVED filtered data (Fig. 7b) revealed that roughly all 
the data falls between perfect agreement and − 10% lines, as it occurs 

for the ROC and DVED filtered data for d′ (Fig. 7a). Performance for ˜dI
′

was in close agreement to that of d̃′ (shown in Fig. 7b), with almost all 
the predictions varying less than 10% indistinctly of the filtering 
method. 

Fig. 6. Percentage of rejected data from ADM 2 after application of different filtering techniques: (a) LUV, (b) ROC and (c) DVED.  

Table 1 
Median percentage of rejected data through the non-aerated region of the 
spillway.   

Filtering method 

ADM LUV (%) ROC (%) DVED (%) 

2 3.1 3.2 8.3 
3 5.7 6.2 12.2  
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5.3. Flow depth skewness 

Discrepancies between d′′ estimated based upon data obtained after 
filtering with the ROC and the DVED algorithms and the classic skew-
ness estimator (Eq. 6) remained usually below 20%. Using only the LUV 
filtering method, the remaining outliers scaled up by two orders of 
magnitude the skewness predictions. This is shown in Fig. 7c, as a 
comparison between the results obtained after filtering with the ROC 
and the DVED algorithms and the classic skewness estimator (Eq. 6). 

Fig. 7d shows the comparison for all three filtering techniques using 
robust estimators (Eq. 7). It must be noted that d̃′′ is restricted to values 
between − 1 and +1, which prevents from direct comparison to d′′. 
Nonetheless, a similar trend can be observed for both classic and robust 
estimators, with the latest allowing reasonable skewness estimations 
even for the less restrictive filtering technique (LUV). 

5.4. Autocorrelation timescales 

Autocorrelation timescales estimated with the classic estimators 
(Eqs. 9 and 11) are considerably smaller when the LUV method is 
applied, instead of the ROC or DVED (Fig. 7e). Likewise, data filtered 
with the ROC technique led to predictions 20% smaller for Tηη than 

when using the DVED method (Fig. 7e). Results for the robust estimation 
of the autocorrelation timescale (T̃ηη, Eqs. 10 and 11) are shown in 
Fig. 7f. Using the robust Spearman’s ranked autocorrelation, the dif-
ferences in the estimation of the autocorrelation timescales reduce 
significantly between the data filtered using the LUV method and the 
other more stringent filtering techniques. Fig. 7e and 7f shows that the 
effect of noise in the sampled data is to reduce the autocorrelation 
function values, which yields estimations corresponding to shorter or 
faster eddies. For all cases, the numerical integration of Eq. (11) was 
conducted using the trapezoidal rule. 

5.5. Vertical velocity fluctuation 

An estimation of the instantaneous free surface vertical velocity can 
be obtained using Eq. (14), with a zero-mean value in a steady flow. The 
intensity of the vertical velocity fluctuation can be studied in terms of 
the STD of the velocity time series (vs

′ ). The resulting vs
′ values obtained 

from the filtered data of all three proposed techniques follow closely the 
same trend as results for d′ . The data filtered using the LUV method 
produces considerably larger values of vs

′ than the other two filtering 
techniques, as some noise is incorporated as a turbulence level. When 
taking advantage of the robust nature of the MAD to estimate ṽs

′ , similar 

Fig. 7. Effect of different filtering techniques on different turbulent flow variables using traditional (left) and robust (right) estimators. (a, b) expected value of the 
depth fluctuation, (c, d) skewness and (e, f) turbulent timescales. Note that for (a–f) ROC and DVED perform likewise and that (c) does not include LUV filtered data 
(which showed random, out of order spreading). Perfect agreement ( − ), ±10% deviation (- -) and ± 20% deviation (⋯). 
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results for all three filtering techniques are obtained indistinctly of the 
filtering method; likewise for d̃′ , shown in Fig. 7b. Hence, discrepancies 
in the robust estimation between the LUV and DVED filtered data remain 
around +20% deviation and the perfect agreement lines. 

5.6. Free surface perturbation celerity 

Fig. 8a shows that the data filtered using the two most stringent 
methods, ROC and DVED methods, yields similar c estimations. Differ-
ently, estimations based on the LUV filtered data scatter significantly. 
Maximum correlation (Rmax) is also shown in Fig. 8a as it is an indicator 
of similarity between the two cross-correlated signals. The median value 
for all measurements of Rmax was 0.16 for the LUV filtered data, 0.45 for 
the ROC filtered data and 0.44 for the DVED filtered data; showing a 
clear improvement with the most restrictive filtering techniques. 

Using the Spearman’s based cross-correlation method (Eq. 10), the 
estimations generally relied between the +/− 20% accuracy range, even 
for the LUV and DVED filtered data (Fig. 8b). Both the ROC and the 
DVED filtered data estimations coincided for most measurements. The 
maximum correlation ˜Rmax was 0.42 for the LUV filtered data, 0.44 for 
the ROC filtered data and 0.41 for the DVED filtered data; showing 
similar levels than after applying the ROC filtering technique with the 
classic correlation approach. 

5.7. One-dimensional flow depth fluctuation spectrum 

Spectrum shown in Fig. 9 were obtained by dividing the 600 s 
samples into 60 equal length non-overlapping signals; which is long 
enough based on results of Fig. 7e and 7f for the autocorrelation time-
scales that held values generally around 0.5 s. The resulting spectra were 
subsequently ensemble-averaged. This procedure is based on that pro-
posed by Welch [36]; despite the temporal window has been chosen 
arbitrarily large as to comprehend a wide range of turbulent timescales. 
The one-dimensional spectra were obtained for different flow conditions 
(Fig. 3) but, for the sake of briefness, the effect of the three filtering 
techniques and the use of classic and robust estimators is only shown for 
one location and flow condition, albeit similar conclusions can be 
derived from the others. 

Fig. 9a shows that ROC and DVED filtering techniques together with 
classic estimators yield similar power law slopes and energy levels, 

Fig. 9. One-dimensional free surface spectrum based on: (a) standard estima-
tors (Eηη) or (b) robust estimators (Ẽηη); all averaged over 60 non-overlapping 
spectra. Data corresponding to one recording of 600 s of ADM 2 for step I-II 
(cavity) and dc/h = 1.1. 

Fig. 8. Effect of different filtering techniques on the free surface perturbations 
celerity obtained with: (a) traditional cross-correlation (c) and (b) with 
Spearman’s ranked cross-correlation (c̃). Perfect agreement ( − ), ±10% devi-
ation (- -) and ± 20% deviation (⋯). 
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although the application of the LUV technique results in a flatter spec-
trum at lower energies and considerably larger higher energies at all 
frequencies – associated to considerably higher error levels – as expected 
from the results for the flow depth fluctuation estimation. Fig. 9b shows 
that all three spectra based upon robust estimators are in very close 
agreement while the power slopes are maintained and coincide with 
those theoretically obtained by Valero and Bung [34]. This holds true for 
early stages of perturbations development, for large displacements the 
gravitation waves (low frequencies) flatten (see Ref. [32] for further 
insights on flow process). This result highlights that robust techniques 
allow accurate determination of the turbulence spectrum independently 
of the employed filtering method. 

6. Discussion 

The application of robust estimators, as opposed of classic estima-
tors, yield results not directly based on the value of each flow quantity 
measured, but on its distribution (i.e., percentiles information). When 
using a robust estimator for the study of a flow variable, the exact value 
of an outlier does not alter the turbulence estimation but only moves a 
percentile position, which is later retrieved (or not, depending on the 
position of the outlier) for the turbulence estimation. Consequently, the 
change in the final turbulence estimation is considerably smaller. 

Random errors may be also included within the sampled data, in the 
form of electrical noise for example, and these might also affect turbu-
lence estimations. When using classic estimators, the statistical moment 
used to describe a turbulence quantity imposes the same order over the 
noise deviations. For the robust estimator counterpart, the random noise 
imposes a certain diffusion in the PMF that is transferred to the turbu-
lence estimations but, nonetheless, does not scale with the power of the 
statistical moment. 

The main limitation of robust estimators comes from the assumption 
of an underlying probability distribution for a certain variable. Turbu-
lence may well not be Gaussian [10], and differences should be incor-
porated for instance in Eq. (5) to enable more refined flow’s turbulence 
parametrizations. If departure from Gaussianity is smaller than the er-
rors affecting experimental sampling, robust estimators may by default 
be more accurate. Besides, filtering of high frequencies may consider-
ably reduce the impact of random noise, but frequency domain filtering 
fell out of the scope of this investigation. 

A summary of the filtering techniques’ performance and the effect of 
robust estimators on most of the studied variables is presented in Ta-
bles 2 and 3 and in Fig. 10. The coefficient of determination, defined as 

the squared value of the Pearson’s product moment [2], is used to assess 
the efficiency of the proposed techniques. This coefficient ranges from 
0 to 1, with 0 for no correlation and 1 for perfect correlation. None-
theless, this efficiency estimator cannot detect bias, which is better 
observed in Figs. 7 and 8. Raw data has been also included in Fig. 10 for 
completeness. 

In Fig. 10, the performance is defined against the DVED filtered data, 
being the most restrictive filtering technique. Nonetheless, the ROC 
technique achieves similar results with just half the amount of the 
rejected data (see Fig. 6). Both the raw and the LUV filtered data can 
yield similarly accurate estimations of expected depths and variance, 
when used together with robust estimators (MED and MAD). For the 
skewness determination, the LUV filtering method and robust estimators 
are the minimum data processing level which should be used. Never-
theless, a similar degree of complexity is involved when using the ROC 
method and the amount of filtered data does not increase considerably. 
For the one-dimensional spectrum, the proposed robust non-parametric 
method allowed detection of the power law scaling whereas power 
levels converged even with lowest levels of filtering. Robust estimators 

Table 2 
Coefficient of determination [2] for different turbulence quantities. Combina-
tion of traditional indicators with raw data, LUV and ROC filtered data. DVED 
filtered data used as reference.   

Variable estimated 

Filtering d  d′ d′′ Tηη  vs
′ c  

Raw 0.978 0.745 − 0.278 0.458 0.724 0.441 
LUV 1.000 0.767 − 0.153 0.750 0.746 0.697 
ROC 1.000 1.000 0.984 0.996 0.998 0.981  

Table 3 
Coefficient of determination [2] for different turbulence quantities. Combina-
tion of robust indicators with raw data, LUV and ROC filtered data. DVED 
filtered data used as reference.   

Variable estimated 

Filtering d̃  d̃′ d̃′

I  d̃′′ T̃ηη  ṽs
′ c̃  

Raw 1.000 0.993 0.986 0.839 0.070 0.972 0.484 
LUV 1.000 1.000 1.000 0.995 0.845 0.996 0.655 
ROC 1.000 1.000 1.000 0.997 0.996 0.996 0.787  

Fig. 10. Coefficient of determination for different flow variables using the raw 
data (- ⋅ -), LUV filtered data (- -) and ROC filtered data ( − ) against the DVED 
filtered data. (a) Traditional estimators and (b) alternative robust estimators. 
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should be used when possible to reduce the uncertainty of the turbu-
lence predictions, as they are insensitive to the presence of outliers. The 
only exception observed in this study is the case of the waves’ celerity 
determination. It is here hypothesized that small differences in an 
instantaneous depth value, can produce a large difference of rank within 
a large signal. These, due to random errors, are different in both signals 
which can result in two ranks with larger differences, thus impairing 
their cross-correlation. 

7. Conclusions 

Classic and robust estimators together with three different filtering 
techniques have been investigated aiming to shed some light on the 
accurate determination of free surface turbulent quantities. Measure-
ments were conducted in the non-aerated region of a large stepped 
spillway model (Fig. 1), which represents one of the most challenging 
turbulent free surface flows investigated in literature. The performances 
of the investigated classic and robust estimators and filtering techniques 
were assessed for the most common turbulence flow variables, ranging 
from simple fluctuation intensities to the autocorrelation timescales and 
one-dimensional turbulence spectrum. 

The findings show that:  

• When using classic estimators, filtering based on the ROC method is a 
minimum to provide sound turbulence estimations.  

• The results did not significantly change with the application of the 
most restrictive filtering method (DVED), although the amount of 
rejected data was doubled.  

• Robust estimators can provide an alternative to classic estimators 
while being more insensitive to the presence of outliers. 

For all studied turbulent variables, at least a resilient estimator has 
been proposed. Using robust estimators, the turbulence predictions 
remained accurate even when the filtering technique would be insuffi-
cient with classic estimators. Whereas some estimators hold parallelism 
or equivalence (see mean/median STD/MAD), others do not necessarily 
satisfy that, but aim to characterise the same variable feature. Using the 
robust alternative can help identifying flow features across different 
studies, using different instrumentations subject to different levels of 
error. 
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[23] D. Mouazé, F. Murzyn, J.R. Chaplin, Free surface length scale estimation in 
hydraulic jumps, J. Fluid Eng. 127 (6) (2005) 1191–1193, https://doi.org/ 
10.1115/1.2060736. 

[24] F. Murzyn, H. Chanson, Free-surface fluctuations in hydraulic jumps: experimental 
observations, Exp. Therm. Fluid Sci. 33 (7) (2009) 1055–1064, https://doi.org/ 
10.1016/j.expthermflusci.2009.06.003. 
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