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Abstract A physical study of hydraulic jump is often undertaken using down-scaled

Froude-similar models with Reynolds numbers much smaller than in prototype (e.g.

spillway stilling basins). The potential viscous scale effects may affect a number of

physical processes including turbulence development and air entrainment, thus challenging

the extrapolation of laboratory data to the prediction of prototype conditions or justification

of numerical modelling. This paper presents an experimental study of hydraulic jumps with

a particular focus on the scale effects in terms of free-surface fluctuation and deformation,

bubble advection and diffusion, bubble-turbulence interaction and turbulence dissipation.

A broad range of free-surface, air–water flow and turbulence properties were measured

systematically for Froude numbers from 3.8 to 10 and Reynolds numbers from 2.1 9 104

to 1.6 9 105. Based upon self-similarities in the longitudinal evolution of a number of

characteristic flow properties, the analytical expressions of time-averaged roller surface

profile, void fraction distribution and longitudinal velocity distribution were derived for

given Froude number. The roller surface dynamics were found free of scale effects in terms

of fluctuation amplitudes but the characteristic frequencies were scale-sensitive. While

some air–water flow parameters such as bubble count rate, bubble chord time distribution

and bubble grouping behaviour could only be correctly quantified at full-scale prototype

conditions, the aeration level and turbulent scales might be estimated with satisfactory

accuracy for engineering applications given a model Reynolds number no less than 4 9 10

to 6 9 104.
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1 Introduction

A hydraulic jump occurs when an open channel flow changes from supercritical to

subcritical [15]. It is a rapidly-varied flow involving air entrainment, turbulent mixing

and energy dissipation [33]. Defining the inflow Froude number Fr1 = V1/(g 9 d1)
0.5,

where V1 is the inflow velocity, g is the gravity and d1 is the inflow depth, a jump with

Fr1[ 4 to 4.5 is often employed in man-made hydraulic structures to dissipate the

kinetic energy of discharging water [14, 23]. Such type of hydraulic jump is charac-

terised by a marked roller at the transition between the impinging and receiving water

bodies, and a depth discontinuity (i.e. jump toe) followed by a turbulent shear layer

[16, 22]. A jump may also take place in a partially-filled pipe flow, resulting in noise,

vibrations and unnecessary aerification. Despite the theoretical and experimental

knowledge gained in the past two centuries, our understanding in detailed flow regimes

of mid-to-high-Froude-number hydraulic jumps remains relatively limited, because too

many parameters are required to describe all physical processes in such a turbulent

multiphase flow.

Physical modelling has been the most reliable approach to investigate hydraulic

jumps since the experimental work of Bidone [3]. The first detailed air–water flow

measurement was performed by Rajaratnam [29] using conductivity phase-detection

probe and Prandtl-Pitot tube to depict the void fraction and velocity distributions. Fol-

lowing Resch and Leutheusser [31] who specified the significance of inflow conditions

affecting the air entrainment process, a number of successful characterisations of air–

water flow properties and turbulence statistics coupling with bubble transport were

reported up to date [26, 36]. The water-phase turbulence was measured for weak jumps

with limited aeration (e.g. [21, 34]). The dynamic features of jump roller attracted

attention of both physical and numerical modelling researchers [27, 32]. The free-surface

profile and fluctuations were measured or simulated, though the analytical studies could

hardly take into account the bubble-turbulence interactions, and both experimental and

computational investigations were restricted to undersize models [28]. A fundamental

issue is the extrapolation of laboratory data to full-scale applications, where self-simi-

larity is regarded as a powerful tool to establish relationships among flow properties at

different spatial and temporal scales [1]. Some literature indicated the existence of self-

similarities in void fraction and interfacial velocity distributions [9, 20], while others

demonstrated significant scale effects for a range of flow properties linked with turbu-

lence development [10].

This paper presents a comprehensive investigation of similitudes and scale effects in

physical modelling of hydraulic jumps and their aeration processes. The investigated

parameters were expanded beyond air–water flow properties to further cover the jump

roller dynamics and turbulent scales. Analytical expressions of void fraction and

velocity profiles were developed based on self-similar distributions of characteristic flow

properties within a full roller length. The results highlighted a number of key param-

eters for scale effect assessment in hydraulic jump and other turbulent air–water flows,

including the rates of free-surface fluctuation, bubble detection and bubble cluster

formation.
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2 Dimensional consideration, instrumentation and flow conditions

2.1 Dimensional analysis

For a simplified case where a hydraulic jump is modelled in a horizontal rectangular

channel with negligible fluid compressibility and friction resistance, a dimensional analysis

indicates that the turbulent air–water flow properties are functions of the spatial positions,

inflow conditions and dominant dimensionless parameters including the Froude and

Reynolds numbers [15]. Herein the turbulent air–water flow properties include, but are not

limited to, the void fraction C, bubble count rate F, roller surface elevation Ys and its

fluctuation ys
0, velocity V(x, y, z) and fluctuation v0(x, y, z), turbulent length and time

scales, etc. The spatial position is characterised in a dimensionless form ((x - Xt)/d1, y/d1,

z/d1), where x, y, z are respectively the longitudinal, vertical, transversal positions, Xt is

the longitudinal jump toe position and d1 the inflow depth. The inflow conditions are

partially-developed when d/d1\ 1, d being the boundary layer thickness at jump toe, and

fully-developed when d/d1 = 1. The Froude number, as defined above, is predominant in

the physical modelling of open channel flows [19]. For a geometrically-similar down-

scaled model with the same fluids as in prototype, the application of Froude similitude

implicitly yields a gross underestimate of the Reynolds number Re = q 9 V1 9 d1/l,
where q is the water density, l the water dynamic viscosity and V1 the inflow velocity [18].

The associated scale effects are critical for turbulent shear flows including hydraulic jumps.

The dimensional consideration may also indicate the significance of the Weber number

We = q 9 V1
2 9 d1/r, r being the air–water surface tension. Since the use of same fluids

in Froude-similar model and prototype yields We � Re4/3, the viscous effects are con-

sidered of higher significance compared to the surface tension in prototype conditions

[37, 10].

2.2 Facility and instrumentation

The experiments were performed in a horizontal rectangular channel. The channel was

built with an upstream head tank, followed by a 3.2 m long, 0.5 m wide and 0.4 m deep

experimental section between an upstream undershoot gate and a downstream overshoot

gate (Fig. 1). The rounded edge (Ø = 0.3 m) of the upstream gate induced a horizontal

impinging flow without contraction. For a given flow rate and upstream gate opening, the

roller position was controlled by adjusting the height of the downstream gate. Figure 1

illustrates the experimental setup and some key parameters.

The flow rate was measured with a Venturi meter in the supply pipeline. The inflow

depth d1 and downstream clear-water depth d2 were measured using a pointer gauge. A

series of acoustic displacement meters were used to record the instantaneous water sur-

face positions. The displacement meters emitted acoustic beams and received those

reflected by the detected water surface, recording the beam travel distance. One sensor

(MicrosonicTM Mic?35/IU/TC) was placed horizontally upstream of the jump, recording

the longitudinal motion of the jump front close to the toe, and several sensors (Mi-

crosonicTM Mic?25/IU/TC) were aligned over the roller centreline, recording the water

elevation fluctuations (Fig. 1). All sensors were scanned at 50 Hz for 540 s. Erroneous

sample points caused by the spray and droplet projections were removed manually in data

post-processing.
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The local air–water flow properties weremeasured using a dual-tip phase-detection probe.

The needle sensor of the probe had a 0.25 mm diameter inner electrode and an external

diameter of 0.8 mm. A dual-tip probe was equipped with two such sensors of different

lengths. The two sensors were excited simultaneously at a sampling rate of 20 kHz for 45 s.

The phase-detection probe detected the transport of air–water interfaces between the

two sensor tips. A correlation analysis between the signals provided statistic information

on air–water interfacial velocity and turbulence. The longitudinal interfacial velocity was

given by V = Dx/T, where Dx is the longitudinal probe-tip separation distance and T is the

time lag of maximum cross-correlation coefficient. The interfacial turbulence intensity

Tu = v0/V was calculated based on the broadening of the correlation functions by

assuming a random detection of an infinitely large number of air–water interfaces [12]. An

integration of the maximum correlation (Rij)max as a function of the probe-tip separation

distance Dx yielded the integral turbulent length scale:

LX¼
ZDxððRijÞmax¼ 0Þ

0

ðRijÞmax � d(DxÞ ð1Þ

The integral turbulent length scale is a characteristic length scale of coherent vortical

structures in which air–water interfaces are advected. Herein the different values of Dx
were achieved using a series of dual-tip probes with Dx from 0 to 29.68 mm. In the present

study, both interfacial turbulence intensity and integral turbulent length scale were cal-

culated based on high-pass filtered probe signals ([10 Hz) where the effects of flow

instabilities on turbulence characterisation was minimised [36]. The resulted high-fre-

quency turbulence intensity and integral length scale are denoted Tu00 and LX
00 respectively.

Mass conservation was tested against the flow meter measurements based on the void

fraction and velocity data given by the phase-detection probe. The agreement was satis-

factory, with some scatter related to the incomplete velocity profiles (see below).

Table 1 Flow conditions for Froude-similar free-surface and air–water flow measurements

Reference Fr1 Re h/W Xt/d1 Instrumentation

Present study 3.8 3.4 9 104 to 1.6 9 105 0.04 to 0.108 40 ± 2a ADM, 2-PDP

5.1 4.5 9 104 to 1.4 9 105 0.04 to 0.08 40 ± 2a ADM, 2-PDP

7.5 3.4 9 104 to 1.4 9 105 0.024 to 0.06 40 ± 2 ADM, 2-PDP

8.5 7.5 9 104 0.04 41.5 ADM, 2-PDP

10.0 9.5 9 104 0.04 39.5 ADM, 2-PDP

Chanson and
Chachereau [10]

5.1 1.3 9 105 0.072 38 2-PDP

Chanson and
Gualtieri [11]

5.1 2.5 9 104 to 6.8 9 104 0.048 20.8 to 41.7 1-PDP

Murzyn and
Chanson [24]

5.1 3.8 9 104 0.036 41.7 2-PDP

Fr1 inflow Froude number, Re inflow Reynolds number, h upstream gate opening, W channel width, Xt

longitudinal jump toe position, d1 inflow depth, ADM acoustic displacement meter, 1-PDP single-tip phase-
detection probe (0.35 mm diameter inner electrode), 2-PDP dual-tip phase-detection probe (0.25 mm
diameter inner electrode)
a For the highest Reynolds number because of the limitation of channel length: Xt/d1 = 22 (Fr1 = 3.8), 29
(Fr1 = 5.1)
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2.3 Flow conditions

An extensive range of experiments were performed, covering Froude numbers from 3.8 to

10 and Reynolds numbers from 2.1 9 104 to 1.6 9 105. All tested flows were charac-

terised by partially-developed inflow conditions. The Froude similitude was tested sys-

tematically for three Froude numbers (Fr1 = 3.8, 5.1 and 7.5). Table 1 summarises the

experimental flow conditions and includes relevant references.

3 Experimental results and self-similarities

3.1 Free-surface profile

Key dimensions of a hydraulic jump include the conjugate depth ratio d2/d1 and the relative

roller length Lr/d1 (Fig. 1), where Lr refers to the longitudinal distance over which the

water elevation increases monotonically. For a smooth horizontal rectangular channel, the

Fig. 2 Side view of hydraulic jumps with close inflow Froude numbers but different Reynolds numbers–
comparison with self-similar roller surface profile. Flow from left to right; shutter speed 1/8000 s.
a Fr1 = 5.1, Re = 2.1 9 104, d1 = 0.012 m, Xt = 0.5 m. b Fr1 = 4.5, Re = 1.83 9 105, d1 = 0.055 m,
Xt = 1.25 m
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conjugate depth ratio d2/d1 can be simply determined by the mass and momentum con-

servation equations as a function of the Froude number [2]:

d2

d1
¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8� Fr21

q
� 1

� �
ð2Þ

The relative jump roller length Lr/d1 was observed to increase almost linearly with

increasing Froude number. A re-analysis of the present experimental data and the data of

Murzyn et al. [27], Kucukali and Chanson [17] and Murzyn and Chanson [25] suggested a

relationship:

C

y/
d 1
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Eq.(5)
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Fig. 3 Time-averaged void fraction distribution and longitudinal variation of characteristic values within
the roller length. a Left vertical distributions of time-averaged void fraction–comparison with analytical
solutions. b Right longitudinal decay in local maximum void fraction along roller length–comparison with
data of Murzyn and Chanson [25], Chanson [9], Chachereau and Chanson [8] and exponential fit. c Left
characteristic elevations and best-fit curves. d Right dimensionless diffusion coefficients–comparison with
data of Chanson [9], Chachereau and Chanson [8] and best-fit curves
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Lr

d1
¼ 6� Fr1 � 1ð Þ for 2\ Fr1 \ 10 ð3Þ

Equations (2) and (3) implied that the ratio of roller length to downstream depth Lr/d2
approached an approximate value around Lr/d2 & 4 at high Froude numbers, although

Eq. (3) was not yet validated for Fr1[ 10.

The time-averaged water elevation above the jump roller exhibited a self-similar roller

surface profile for all tested flow conditions. The experimental data followed closely

Ys � d1

d2 � d1
¼ x� Xt

Lr

� �0:537

for 3:8 \ Fr1 \ 10; 0\ ðx� XtÞ=Lr \ 1 ð4Þ

where Ys stands for the vertical position of water surface from the invert. Considering

Eqs. (2) and (3), the dimensionless water elevation Ys/d1 at a longitudinal position

(x - Xt)/d1 is simply a function of the Froude number Fr1. Equation (4) is sketched in

Fig. 2 for the corresponding Froude numbers, agreed well with the visualisation in spite of

the instantaneous roller surface deformation in each photograph.

3.2 Air–water flow properties

3.2.1 Void fraction

In hydraulic jumps, air entrainment takes place at the jump toe and through the roller free-

surface (Fig. 2) [35]. The spatial distributions of time-averaged void fraction characterise

the bubble advection and diffusion processes in the roller. Figure 3a plots void fraction

profiles at three cross-sections in the same flow. For partially-developed inflow conditions,

the typical void fraction profile exhibited a bell-shape in the shear flow region, with a local

maximum Cmax at the elevation YCmax, and a monotonically increasing distribution across

the free-surface region up to unity in air. The boundary between the shear flow and free-

surface regions was characterised by a local minimum void fraction at the elevation y*.

The shear flow void fraction distribution followed the solution of bubble diffusion equation

with the jump toe being the point source of air entrainment [9]:

C = Cmax � exp � 1

4� D#
�

y�YCmax

d1

� �2
x�Xt

d1

� �
0
B@

1
CA y\ y* ð5Þ

where D# is a depth-averaged diffusivity for 0\ y\ y*. In the upper free-surface region,

an interfacial aeration model suggested a void fraction distribution following the Gaussian

error function [6, 26]:

C =
1

2
� 1 + erf

y�Y50

d1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D*� x�Xtð Þ

d1

q
0
B@

1
CA

0
B@

1
CA y [ y* ð6aÞ

where Y50 is the elevation where C = 0.5, D* is the diffusivity in the free-surface region

(y[ y*), and the Gaussian error function is defined as
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erf uð Þ¼ 2ffiffiffi
p

p �
Zu

0

exp �t2
� �

� dt ð6bÞ

Equations (5) and (6) are compared with experimental data in Fig. 3a. Figures 3b–d

show the longitudinal variations of the key parameters in Eqs. (5) and (6) for

3.8\Fr1\ 10, 3.4 9 104\Re\ 1.6 9 105. Similar distributions were shown for each

parameter over the roller length Lr between different flow conditions, as fitted by Eqs. (7)–

(12). In Fig. 3b, the present local maximum void fraction data are compared with the data

of Murzyn and Chanson [25] for 5.1\Fr1\ 8.3, Chanson [9] for 5.1\Fr1\ 11.2 and

Chachereau and Chanson [8] for 3.1\Fr1\ 5.1. Assuming a pseudo-periodic jump toe

oscillation, thus Cmax(x = Xt) = 0.5, the present data was best correlated in terms of the

roller length:

Cmax ¼ 0:5� exp �3:4� x� Xt

Lr

� �
ð7aÞ

Equation (7a) may be also written as:

Cmax ¼ 0:5� exp � 1

1:8� Fr1 � 1ð Þ �
x� Xt

d1

� �
ð7bÞ

In Fig. 3b, the data scatter about Eq. (7a) was mostly related to the scale effects. The

uncertainties in roller length estimation may also contribute to the discrepancies between

the previous datasets.

Figure 3c shows increasing characteristic elevations YCmax, y* and Y50 with increasing

distance from the toe. The elevations YCmax and y* are respectively considered as the

centreline and upper boundary of the turbulent shear layer, and they followed some linear

increasing trends as the water depth increased and the shear layer expanded:

YCmax
� d1

d2 � d1
¼ 0:56� x� Xt

Lr

ð8Þ

y� � d1

d2 � d1
¼ 0:122þ 0:714� x� Xt

Lr

ð9Þ

The elevation Y50 was found close to the time-averaged water depth Ys measured by

acoustic displacement meters. The best-fit curve almost overlapped with the roller surface

profile (Eq. 4):

Y50 � d1

d2 � d1
¼ x� Xt

Lr

� �0:536

ð10Þ

The diffusivities D# and D* were deduced for the best-fit void fraction profiles (Fig. 3d).

The shear flow diffusivity D# was typically between 0.02 and 0.1, increasing with

increasing distance from the toe, and the free-surface diffusivity D* was between 0.08 and

0.001, decreasing along the roller. A larger Froude number tended to give both relatively

higher values of D# and D*. A coarse data-fit suggested:
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D# ¼ 0:1 � 1 � exp �2:3 � x � Xt

Lr

� �� �
ð11Þ

D* ¼ 0:1 � exp �3:56 � x � Xt

Lr

� �
ð12Þ

A combination of Eqs. (2) to (12) allowed for a prediction of spatial void fraction

distributions using the inflow Froude number (3.8\Fr1\ 10). The analytical model was

independent of the Reynolds number. It was tested against the experimental results,

yielding an average coefficient of determination R2 = 0.90 for a total of 36 data profiles.

3.2.2 Bubble count rate

The bubble count rate is linked to both local void fraction and turbulent shear stress

affecting bubble break-up, coalescence and dispersion. For a given void fraction, the

bubble count rate is proportional to the air–water interfacial area. Figure 4a shows typical

bubble count rate distributions at different vertical cross-sections in the roller. The data

profiles exhibited a bimodal shape, with the lower peak corresponding to the presence of

maximum shear stress in the shear layer and the upper peak next to the time-averaged

water elevation where C = 0.3 to 0.5. The lower peak decreased rapidly in the longitudinal

direction as the shear flow turbulence was dissipated and the shear layer was de-aerated by

buoyancy.

Figure 4b plots the longitudinal decay of maximum bubble count rate Fmax 9 d1/V1

over the roller length. The decreasing trend varied significantly among different Froude

and Reynolds numbers. Although no physical data was available close to the toe

(0\ (x - Xt)/Lr\ 0.1) because of the toe oscillations, a general variation trend may still

be estimated based on an analogy between a hydraulic jump and a vertical plunging jet. A

supported planar plunging jet is characterised by similar air entrainment and shear layer

F×d1/V1

y/
d 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
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Fr1 = 5.1, Re = 4.5×104

(x-Xt)/d1 = 4.2
(x-Xt)/d1 = 8.4
(x-Xt)/d1 = 18.8

A B

Fig. 4 Bubble count rate distributions and longitudinal decay. a Left vertical distributions of bubble count
rate. b Right longitudinal decay in maximum bubble count rate along roller length
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development processes [4], and the relatively stable flow pattern allows for detailed air–

water flow measurements close to the impingement point. Using similar instrumentation,

Brattberg and Chanson [5] observed a rapid increase in maximum bubble count rate within

a short distance from the impingement point before it decreased with further increasing

distance. This reflected a bubble break-up process, which was believed to take place in

hydraulic jumps as well. Therefore, the longitudinal variation of maximum bubble count

rate was proposed with a unimodal shape, as sketched by dot lines in Fig. 4b. The proposed

trends suggested relatively small bubble count rates at the jump toe corresponding to the

entrapment of large air pockets, and a sharp increase in bubble quantity as the air pockets

were broken into numerous small bubbles by the shear stresses. The largest value of

Fmax 9 d1/V1 was expected to be reached around 0.1\ (x - Xt)/Lr\ 0.2, the magnitude

being determined by the Reynolds number. The subsequent decrease followed an expo-

nential decay controlled by the diffusive advection of bubbles, for which the Froude

number acted as a predominant factor. The decreasing maximum bubble count rate may be

estimated as:

Fmax � d1

V1

¼ 0:343þ 0:131� Re

104

� �
� exp � 1

2:67� Fr1 � 1ð Þ �
x� x1

d1

� �

for 0:2\ ðx� XtÞ=Lr \ 1

ð13Þ

Equation (13) was derived based upon experimental datasets with 3.8\ Fr1\ 11.2 and

3.5 9 104\Re\ 1.6 9 105. It is plotted in solid lines in Fig. 4b and compared to the

present data with the same Froude and Reynolds numbers.

3.2.3 Longitudinal interfacial velocity

The time-averaged longitudinal velocity V was positive in the shear flow region, with a

boundary layer developing above the channel bed, and negative in the free-surface recir-

culation region. An analogy between the impinging flow into the jump roller and a wall jet

suggested a velocity distribution following some wall jet equation [9, 30]:

V

Vmax

¼ y

YVmax

� �1
N

for
y

YVmax

\ 1 ð14aÞ

V� Vrecirc

Vmax � Vrecirc

¼ exp � 1

2
� 1:765� y� YVmax

Y0:5

� �� �2
 !

for
y

YVmax

[ 1 ð14bÞ

where Vmax is the maximum velocity in the lower shear flow, YVmax is the corresponding

elevation of maximum velocity which also characterises the upper edge of the bottom

boundary layer, Vrecirc is the depth-averaged recirculation velocity, Y0.5 is the elevation

where V = (Vmax - Vrecirc)/2 and N is a constant between 6 and 10. Equation (14)

described a self-similar velocity distribution in a hydraulic jump with a marked roller. The

experimental data are plotted in Fig. 5a and compared with Eq. (14b), showing similarities

between different Froude and Reynolds numbers as well as different longitudinal positions.

The inherent limitation of correlation analysis hindered the derivation of meaningful

velocity data in the transition area between positive and negative velocity regions where

the instantaneous velocity direction changed frequently and the average velocity was close

to zero. The velocity profile in Fig. 5a showed the maximum velocity Vmax in the lower
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shear region and quasi-uniform recirculation velocity Vrecirc across the free-surface region.

Figure 5b plots the longitudinal variation of Vmax within the roller length, and the corre-

sponding elevation YVmax is shown in Fig. 5c together with the elevation Y0.5. The depth-

averaged (y[ y*) recirculation velocity is shown in Fig. 5d for different Froude numbers.

For all flow conditions, the maximum velocity in the shear flow decreased from the

supercritical free-stream velocity U at the jump toe to 0.3 9 V1 to 0.5 9 V1 at the

downstream end of roller (Fig. 5b). The longitudinal decay followed a trend:

(V-Vrecirc)/(Vmax-Vrecirc)

(y
-Y

V
m

ax
)/Y

0.
5

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1
-0.5

0

0.5

1

1.5

2

2.5

3
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Fig. 5 Time-averaged interfacial velocity profile and characteristic parameters. a Left self-similar velocity
distribution–comparison with the wall jet solution. b Right longitudinal decay in maximum velocity within
the roller length; 3.8\Fr1\ 10, 3.5 9 104\Re\ 1.6 9 105. c Left elevations of maximum and zero
velocities; 5.1\Fr1\ 10, 6.8 9 104\Re\ 1.4 9 105. d Right recirculation velocity–comparison with
data of Chachereau and Chanson [8], Chanson [9] and Eq. (19)
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Vmax ¼ U� exp �1:2� x� Xt

Lr

� �
for 3:8\ Fr1 \ 10 ð15Þ

where the supercritical free-stream velocity U & 1.1 9 V1. The vertical position of

maximum velocity YVmax increased as the boundary layer developed along the roller

(Fig. 5c). The characteristic elevations could be estimated as:

YVmax

d1
¼ 0:5þ 0:6� x� Xt

Lr

ð16Þ

Y0:5

d1
¼ 1:8þ 6� x� Xt

Lr

ð17Þ

Overall the characteristic elevations satisfied a relationship:

YVmax

d1
\

YFmax

d1
\

YCmax

d1
\

yðV ¼ 0Þ
d1

\
y�
d1

\
Y50

d1
� Ys

d1
ð18Þ

where y(V = 0) is the boundary between positive and negative flow regions with zero

time-averaged velocity. The reversing velocity was quasi-uniform in each cross-section of

the recirculation region, and close depth-averaged values Vrecirc/V1 were obtained at dif-

ferent longitudinal positions in the same flow. The data of present study and Chachereau

and Chanson [8] suggested a decreasing dimensionless recirculation velocity magnitude

with increasing Froude number (Fig. 5d):

Vrecirc

V1

¼� 0:888þ 0:273� ln Fr1ð Þ for 3:1\ Fr1 \ 10 ð19Þ

It is noteworthy that flow recirculation only took place within a short distance down-

stream of the toe for small Froude numbers, and the relative length of reversing flow to

entire roller appeared to increase with increasing Froude number, albeit remained less than

unity. The recirculation velocity results were quantitatively comparable to the earlier

findings Vrecirc/V1 & 0.4 [9]. For comparison, Coakley et al. [13] measured the breaking

free-surface velocity with radar instrumentation and found velocity scattering from -1 to

0.5 m/s for approaching velocities from 2.42 to 2.65 m/s. Consequently, the time-averaged

longitudinal velocity profile was described by Eqs. (14) to (19), thus can be fully-expressed

using the longitudinal position (x - Xt)/d1 and Froude number Fr1. For all 23 velocity

profiles in the present study, the analytical model provided an average coefficient of

determination R2 = 0.90. Although three-dimensional turbulent structures were visible in

the roller and at the free-surface, the correlation between signals at different transverse

positions indicated the time-averaged transverse velocity being zero.

3.2.4 Air entrainment flux

Based upon the void fraction and interfacial velocity measurements, the air entrainment

flux was derived from the mass conservation for the air phase. In the presence of distinct

flow recirculation, the air flux qent was calculated in two flow regions:
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q
ðsÞ
ent ¼

ZyðV¼0Þ

y¼0

C� V� dy[ 0 ð20aÞ

q
ðrÞ
ent ¼

ZY90

yðV¼0Þ

C� V� dy\0 ð20bÞ

Herein qent
(s) and qent

(r) denote the entrapped air fluxes in the turbulent shear region (V[ 0,

qent
(s) [ 0) and recirculation region (V\ 0, qent

(r) \ 0) respectively, and Y90 is the elevation

where C = 0.9, considered as the upper boundary of the open homogeneous air–water flow

[7]. A definition sketch is shown in Fig. 6a. The experimental data are plotted in Fig. 6b in

terms of the longitudinal variations of entrained and recirculation air fluxes. Since the

spatial distributions of void fraction and velocity can be predicted based on Eqs. (2) to

(19), the air entrainment flux is also predictable for a given Froude number. The air flux

prediction varied to some extent between Froude numbers, and a typical longitudinal

variation trend is given in Fig. 6b (dashed lines). Overall the experimental data agreed well

with the predictions, though the phase-detection probes tended to provide overestimated air

fluxes due to the accumulative effects of the scatter in velocity measurement results.

The theoretical prediction suggested a sharp increase in both shear flow and recircu-

lation air fluxes immediately downstream of the toe. The total air flux |qent
(s) | ? |qent

(r) | reached

a maximum between (x - Xt)/Lr = 0.2 and 0.4. Bubbles were driven by buoyancy from

the shear layer to the free-surface, and this resulted in a faster longitudinal de-aeration of

the shear flow than the upper recirculation region. The air entrainment at the jump toe acted

as the source of air flux qent
(s) in the shear layer, and the air flux qent

(s) contributed to part of the

recirculating air flux qent
(r) in the free-surface region, the rest part |qent

(r) | - |qent
(s) | being the air–

Fig. 6 Longitudinal distribution of air entrainment flux–experimental data and typical theoretical
prediction. a Left sketch of air entrainment and entrapped air flux in hydraulic jump with a marked
roller. b Right longitudinal development of relative air entrainment fluxes to specific water discharge in
turbulent shear region and recirculation region
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water exchange in the spray region above the bubbly flow. In Fig. 6, |qent
(r) | - |qent

(s) |[ 0

indicates an extra amount of air entrainment through the roller free-surface.

4 Scale effects and turbulence scales

4.1 Scale effects on roller surface dynamics

The dynamic characteristics of jump roller included the vertical water depth fluctuations

and horizontal jump toe oscillations. The horizontal and vertical motions were not inde-

pendent processes but linked to the instantaneous deformation of the roller surface profile.

The amplitudes of toe oscillations and depth fluctuations were enhanced with an increasing

Froude number, while the dimensionless frequencies decreased [35]. For the same Froude

number, the relationship between the maximum standard deviation of depth fluctuation

along the roller (ys
0)max, and the standard deviation of jump toe oscillation xt

0 can be

estimated as (ys
0)max = 1.36 9 xt

0 - 0.82 9 d1. The ratio of corresponding frequencies

was about Fs/Ft & 2.5. The effects of the Reynolds number were tested for Fr1 = 5.1 and

2.1 9 104\Re\ 1.6 9 105. The results are shown in Fig. 7a in terms of the amplitude

and in Fig. 7b in terms of the frequency. The dimensionless amplitudes were independent

of the Reynolds number, whereas the dimensionless frequencies increased with an

increasing Reynolds number. That is, viscous scale effects were only observed in terms of

the time scales of roller fluctuating motions. The dimensionless frequencies of unsteady

fluctuations in prototype hydraulic jumps are expected to be higher than the values sug-

gested by the existing experimental data.

4.2 Scale effects on air–water flow properties

Figure 8 illustrates the effects of Reynolds number on the void fraction and bubble count

rate results. For each parameter, the vertical data profiles are presented for Fr1 = 3.8 and

7.5, and the variations of the maximum value in the shear flow are shown. Chanson and
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Fig. 7 Effect of Reynolds number on roller surface dynamics; Fr1 = 5.1, 2.1 9 104\Re\ 1.6 9 105.
a Left dimensionless standard deviations of jump toe oscillation and water depth fluctuation as functions of
Reynolds number. b Right characteristic jump toe oscillation and water depth fluctuation frequencies as
functions of Reynolds number
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Fig. 8 Effects of Reynolds number on void fraction and bubble count rate. a1 Left vertical void fraction
distributions–Fr1 = 3.8, (x - Xt)/d1 = 4.2. b1 Right vertical bubble count rate distributions–Fr1 = 3.8,
(x - Xt)/d1 = 4.2. a2 Left vertical void fraction distributions–Fr1 = 7.5, (x - Xt)/d1 = 12.5. b2 Right
vertical bubble count rate distributions–Fr1 = 7.5, (x - Xt)/d1 = 12.5. a3 Left local maximum void fraction
in turbulent shear layer as a function of Reynolds number, inclusive of data of Chanson and Gualtieri [11],
Murzyn and Chanson [24], Chachereau and Chanson [8]. b3 Right maximum bubble count rate in turbulent
shear layer as a function of Reynolds number, inclusive of data of Chanson and Gualtieri [11], Murzyn and
Chanson [24], Chachereau and Chanson [8]
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Chachereau [10] presented a series of comparisons for Fr1 = 5.1 based on the data of

Chanson and Gualtieri [11], Murzyn and Chanson [24], Chachereau and Chanson [8]. Their

flow conditions were also repeated in the present study. The results indicated some increase

in shear layer void fraction with increasing Reynolds number. This might be linked to the

change of inflow turbulence level which is critical for the air entrapment at the

impingement point. For a rough estimate of void fraction distribution, the scale effects

appeared to be not crucial for Reynolds numbers larger than 4 9 104 to 6 9 104. On the

other hand, the significance of Reynolds number affecting the shear layer bubble count rate

can be understood by considering the formation and breakage of air bubbles determined by

the balance between air–water surface tension and viscous shear stress. The drastic scale

effects in terms of bubble count rate implied much stronger air–water exchange and

bubble-turbulence interaction in prototype flows than in laboratory models. For example, a

hydraulic jump in prototype stilling basin with Re*107 may produce one to two orders

more bubbles compared to an experimental jump with Re*105, though such an estimate

still needs to be justified by prototype measurements.

The ratio of time-averaged void fraction to bubble count rate yields the mean bubble

chord time which is the average time a bubble spends on the phase-detection probe tip. The

bubble chord length can be derived in the lower shear flow where the velocity is constantly

in the longitudinal downstream direction. In the upper part of the roller, the time-averaged

longitudinal velocity data do not provide useful information on length scale of bubbles.

The mean bubble chord time increased across a vertical cross-section from bottom to free-

surface. It was sensitive to the change in Reynolds number. For example, at the elevation

of maximum bubble count rate y = YFmax, the present data suggested a relationship

between the dimensionless mean bubble chord time and Reynolds number: (tch)mean 9

V1/d1 = 1.5 9 104/Re. The bubble chord length exhibited a broad spectrum in its prob-

ability distribution. Figure 9 presents the probability density functions (PDFs) of bubble

chord length at the elevation y = YFmax for different Reynolds numbers. The bin size of

PDF is 0.5 mm. The probability distribution indicated a wide range of bubble size from

sub-millimetre to centimetre. For the tested flow conditions at such location of maximum

shear stress, more than 50 % of bubbles had a chord length smaller than 2 mm. A higher
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Fig. 9 Effect of Reynolds number on probability distribution of bubble chord length at the elevation of
maximum bubble count rate–Fr1 = 7.5, (x - Xt)/d1 = 12.5, y = YFmax
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Reynolds number tended to produce a larger percentage of small-size bubbles due to the

enhanced turbulent shear force that induced break-up of large bubbles.

4.3 Scale effects on turbulent scales

4.3.1 Turbulence intensity

No obvious scale effects were observed in terms of dimensionless time-averaged interfacial

velocity. The derivation of turbulence intensity Tu was based upon an assumption of a

random detection of an infinitely large number of air–water interfaces, although bubble

grouping and large-scale fluctuations did exist and might bias the measurement results. The

raw phase-detection probe signal often gave unusually-high turbulence intensity in the flow

regions affected by the large-scale fluctuations. The high-pass filtered signal allowed for a

more accurate and meaningful characterisation of decomposed turbulence intensity Tu00

between 0.5 and 1.8, decreasing in the streamwise direction. Such air–water interfacial

turbulence intensities were larger than the water-phase turbulence intensities measured in

less aerated jumps [21, 31]. Figure 10 compares the high-frequency turbulence intensities

Tu’’ for different Reynolds numbers (Fr1 = 3.8 and 7.5). A smaller turbulence intensity

Tu00 was shown for lower Reynolds number, implying an underestimated turbulence level

in a down-scaled model. For example, for Fr1 = 7.5 at the elevation of maximum bubble

count rate y = YFmax, Tu
00 decreased by 20 % when the Reynolds number was reduced

from 1.4 9 105 to 3.4 9 104. The decrease in relative velocity fluctuation was linked to

the increasing significance of viscous force when the Reynolds number was small, which

was also responsible for a decrease in local shear stress.

4.3.2 Integral turbulent length scales

The integral turbulent length scale was measured in the longitudinal direction. A typical

data profile showed a quasi-bimodal shape in a vertical cross-section close to the jump toe.

The lower peak was exhibited around the elevation of maximum velocity in the lower shear
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Fig. 10 Effect of Reynolds number on turbulence intensities of high-frequency filtered signals. a Left
Fr1 = 3.8, (x - Xt)/d1 = 4.2. b Right Fr1 = 7.5, (x - Xt)/d1 = 12.5
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flow, and the upper peak was seen next to the roller surface. The two peaks characterised

respectively the large high-frequency turbulent structures in the shear flow and the low-

frequency free-surface structures associated with the roller surface deformation. This can

be seen in Fig. 11 showing both integral length scales LX/d1 and LX
00/d1 for the raw and

high-pass filtered signals. The close values of LX/d1 and LX
00/d1 in the lower shear flow

indicated dominant high-frequency turbulent motions in this region, whereas the large

difference between LX/d1 and LX
00/d1 next to the free-surface implied a main contribution

of local low-frequency fluctuations. While the lower peak shrunk rapidly at downstream as

the high-frequency turbulence was dissipated, the upper peak increased as the surface wave

propagated and large roller structures formed along the roller free-surface. Murzyn et al.

[27] calculated the integral turbulent length scales for instantaneous water surface position

data Ys. The surface integral length scales were close to the present bubbly-flow integral

length scales measured at y = Y50, noting that Y50 & Ys (Eq. (18)).

Figure 11 demonstrates the scale effects on longitudinal integral length scales for four

Reynolds numbers. The variation of each dimensionless length scale was limited for

Re[ 6.8 9 104, and a further decrease in Reynolds number led to a remarkable increase in

length scales in the upper shear layer and free-surface region. This was because the large

vortical and recirculating flow structures were dissipated rapidly for a small Reynolds

number. The vortical and recirculating structures were responsible for a deterioration of

signal correlation (e.g. Rij in Eq. 1), thus led to smaller integral turbulent scales. In other

words, the increase in integral turbulent scales at small Reynolds numbers was the result of

a better-organised, less turbulent flow pattern.

4.4 Scale effects on two-dimensional bubble clustering

A result of bubble-turbulence interaction is the grouping of bubbles, forming bubble

clusters. The bubble clustering events in hydraulic jumps were investigated previously

based on various clustering criteria that identified one-dimensional bubble clusters in the

longitudinal direction. For example, the near-wake criterion defines a pair of clustering

bubbles travelling one after another when their separation distance was smaller than the

dimension of the leading bubble. A two-dimensional near-wake criterion was developed to
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take into account bubbles travelling side by side [35]. Figure 12 sketches a two-dimen-

sional cluster structure detected by two phase-detection probe sensors separated by a

transverse distance Dz. Herein the effects of Reynolds number were investigated for

Fr1 = 7.5 with a probe sensor separation Dz = 3.57 mm. The typical results are presented

in Fig. 13a–d at the location (x - Xt)/d1 = 12.5, y = YFmax, with comparison of the two-

dimensional cluster properties to the one-dimensional properties given by a single probe

sensor.

Figure 13a shows the dimensionless cluster rate Fclu 9 d1/V1 defined as the number of

clusters per second. The cluster rate was found to be proportional to the bubble count rate

hence also increase with increasing Reynolds number. Figures 13b, c show respectively the

cluster size Nclu defined as the average number of bubbles per cluster, and the cluster

proportion Pclu defined as the percentage of bubbles in clusters. The percentage of medium

to large clusters that consisted of four or more bubbles is plotted in Fig. 13d. Scale effects

were observed for all parameters based on both one-dimensional and two-dimensional

clustering criteria. Basically, the results indicated that, for a larger Reynolds number, a

larger proportion of bubbles were involved in clustering events, forming more clusters per

unit time and each cluster consisting of more bubbles on average. A comparison in terms of

the bubble chord time spectrum further indicated that an increase in Reynolds number led

to a greater percentage of small bubble chord time for the family of bubbles involved in

clustering. It implied that a higher turbulence level involved more small bubbles in clus-

tering events, thus enhanced the bubble-turbulence interplay. Overall, the clustering

properties showed strong correlation to the turbulence level of the flow, and were hardly

reproduced in down-scaled models based upon Froude similitude. The findings was sup-

ported by the earlier preliminary findings of Chanson and Chachereau [10].

4.5 Summary: data extrapolation to full-scale and scale effects

The present study demonstrated that most air–water flow properties obtained with labo-

ratory experiments cannot be directly extrapolated to full scale based upon Froude simi-

larity. The results highlighted a wide range of characteristics related to flow dynamics,

turbulence, air entrainment and bubble-turbulence interaction that should be considered in

scale effect assessment. Table 2 summarises the tested flow properties.

When the scale effects are investigated using the same experimental flume, a challenge

exists in characterising the inflow turbulence level which is critical to the air entrainment at

the jump toe. Although the inflow length over which the boundary layer develops can be

scaled accordingly, the turbulence level of the impinging flow may be also affected by the

initial flow in upstream head tank, the inflow aspect ratio and the relative roughness of the

channel bed. These factors are not scaled and their effects on the experimental results are

often ignored. Furthermore, the effects of the instrumentation characteristics have not been

Fig. 12 Sketch of a two-dimensional bubble cluster detected by side-by-side phase-detection probe sensors
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studied systematically up to date. The minimum size of detectable bubbles/droplets is

linked to the relative size and scanning rate of the phase-detection probe sensor. The

particles smaller than the sensor inner diameter in length scale or the response time in time

scale are missed by the measurement system. When a double-tip phase-detection probe is

in use, the relative position of two sensor tips is another factor to be taken into account.

5 Conclusion

The hydraulic jumps were studied physically in terms of free-surface dynamics, air–water

flow properties and turbulent scales for Froude numbers between 3.8 and 10. The scale

effects were investigated for three Froude numbers, with corresponding Reynolds numbers

ranging from 2.1 9 104 to 1.6 9 105. Most flow properties were tested within the length of

jump roller which was a function of the Froude number. Some flow properties showed self-

similar evolution trend along the roller between different flow conditions. These included

the water surface elevation, maximum shear layer void fraction, maximum interfacial

velocity and their vertical positions. As a result, analytical expressions of void fraction and
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interfacial velocity profiles could be defined by the longitudinal position (x - Xt)/d1 and

Froude number Fr1, ignoring the limited scale effects on shear layer void fraction for small

Reynolds numbers. For most other parameters, noticeable scale effects were observed and

key results are presented in Table 2. While the characteristic surface fluctuation fre-

quencies, shear layer void fraction and integral turbulent length scales were mainly

affected at Reynolds numbers of order of 104 or less, the bubble count rate, bubble chord

time, bubble clustering and turbulence intensities were drastically influenced by down-

scaling and could be only correctly quantified at full-scale. In practice, the aeration level

and turbulent scales might be estimated with satisfactory accuracy for engineering appli-

cations given a Reynolds number no less than 4 9 104 to 6 9 104.

The present study broadened the list of scale-sensitive parameters in such turbulent two-

phase open channel flows by encompassing the unsteady free-surface motions, turbulent

length/time scales and two-dimensional bubble clustering events. No numerical model has

been fully validated for these flow properties up to date. Although the prediction of some

key steady flow properties is now possible for permissive accuracy requirement, most

dynamic data and turbulence statistics are still not available for prototype conditions.

Table 2 Criteria to minimise scale effects in physical scaling of hydraulic jumps based on Froude
similarity

Flow properties Dimensionless notation Remarks

Height and length of jump
roller

d2/d1, Lr/d1 = F(Fr1) No scale effects

Roller surface elevation Ys/d1 = F((x - Xt)/d1, Fr1) Self-similarity. No scale effects

Amplitudes of toe oscillation
and depth fluctuation

xt
0/d1, (ys

0)max/d1 = F(Fr1) No scale effects

Frequencies of toe oscillation
and depth fluctuation

Ft 9 d1/V1, Fs 9 d1/
V1 = F(Fr1, Re)

Limited scale effects for Re[ 1 9 105

Void fraction C & F((x - Xt)/d1, y/d1, Fr1) Quasi-self-similarity. Limited scale
effects for Re[ 4 9 104 to 6 9 104

Cmax, YCmax/d1, Y50/d1, D
#,

D* & F((x - Xt)/d1, Fr1)

Bubble count rate F 9 d1/V1 = F((x - Xt)/d1,
y/d1, Fr1, Re)

Scale effects unless at full-scale

Bubble chord time tch 9 V1/d1 = F((x - Xt)/d1,
y/d1, Fr1, Re)

Scale effects unless at full-scale

Interfacial velocity V/V1 = F((x - Xt)/d1, y/d1,
Fr1)

Self-similarity with flow reversal. No
scale effects

Vmax/V1, YVmax/d1, Y0.5/d1, Vrecirc/
V1 = F((x - Xt)/d1, Fr1)

High-frequency interfacial
turbulence intensity

Tu00 = F((x - Xt)/d1, y/d1,
Fr1, Re)

Scale effects unless at full-scale

Integral turbulent length
scale

LX/d1, LX
00/d1 = F((x - Xt)/

d1, y/d1, Fr1, Re)
Limited scale effects for Re[ 4 9 104 to
6 9 104

Air entrainment flux qent/(Q/W) & F((x - Xt)/d1,
Fr1)

Limited scale effects for Re[ 4 9 104 to
6 9 104

Bubble clustering properties Fclu 9 d1/V1, Nclu,
Pclu = F((x - Xt)/d1, y/d1,
Fr1, Re)

Scale effects unless at full-scale
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Besides the presented flow properties, one parameter of equivalent importance, if not more,

is the pressure fluctuations, as well as the associated modification of unsteady pressure field

by the air–water mixing.
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