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a b s t r a c t 

In free-surface flows, the interactions between high-velocity liquid and atmosphere may lead to strong 

gas-liquid mixing and complex multiphase flow interactions. In this study, the void fraction power spec- 

trum density (PSD) is used to provide an alternative view of the air-water flow composition. The high 

frequency range of the PSD curve reflects contributions of small chord times, while the low frequency 

range contains contributions of both small and large chord times. Likewise, the interactions between the 

smallest bubbles contribute approximately uniformly to the entire frequency range of the spectrum, while 

any interaction involving large bubbles/drops will be modulated by 1/f 2 . It is shown that the void fraction 

spectra are a powerful tool in providing an alternative view of the air-water flow composition. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

f

 

s  

s  

b  

a

2

 

s  

s  

d  

λ  

o  

o  

s  

a  

g

 

s  

t  
1. Introduction 

The interactions between high-velocity liquids and the atmo-

sphere may lead to strong gas-liquid mixing and complex multi-

phase flow interactions [4,8,15] . Relevant applications encompass

chemical, nuclear, civil, mechanical and environmental engineer-

ing situations. The resulting gas-liquid mixture consists of both gas

bubbles surrounded by liquid and droplets surrounded by gas, in-

clusive of foam, spray and complex gas-liquid structures [10,12,17] .

The entrainment of gas packets can be localised, as at the impinge-

ment of plunging jets [1,9] , or continuous along the gas-liquid in-

terface, e.g. on a spillway chute [2,19] ( Fig. 1 ). 

In high-velocity free-surface flows, the gas volume fraction

ranges from very small values to unity in the atmosphere. Tradi-

tional monophase flow measurement technique are affected by the

dilute phase and the gas-liquid interfaces. The most robust method

is the phase-detection needle probe [3,5,6,13] . The probe tip is de-

signed to pierce the gas-liquid interfaces and the resulting signal is

a pseudo-square-wave signal, as illustrated in Fig. 2 A. Fig. 2 A show

instantaneous void fraction data (blue curve) and post-processed

signal using a single threshold technique. In Fig. 2 A, each signal

drop corresponds to a liquid-to-gas interface, while the following

signal rise is a gas-to-liquid interface detection. Over the sampling

period, the signal averaging gives the time-averaged void fraction
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nd the rate of liquid-to-gas interface detections yields the bubble

requency. 

In the present study, the processing of phase-detection probe

ignal is re-visited. It is shown that the instantaneous signal of a

ingle-sensor probe includes informations in terms of both phase

ulk and gas-liquid composition. These properties are developed,

nd physical observations are discussed. 

. Basic considerations on gas-liquid structure 

Considering a streamtube through a phase-detection needle

ensor, the flow may be reduced to a streamwise distribution of

mall discrete gas and liquid elements, comprised of the smallest

iscrete air-water particles of length scale λaw 

, as shown in Fig. 2 B.

aw 

is selected such that the probability of one element being gas

r liquid becomes independent of the adjacent elements. Focusing

n each pair of adjacent gas-liquid elements defined as 1 and 2 re-

pectively, a gas-liquid interface is detected when element 1 is gas

nd element 2 is liquid, or element 1 is liquid and element 2 is

as. 

For a segment of gas-liquid signal, in which the number of

mall discrete gas and liquid elements is N a and N w 

respectively,

he probability of one element being gas (Pr( a )) or liquid (Pr( w )) is

espectively: 

r (a) = 

N a 

N a + N w 

= C (1)

r (w) = 

N w 

N a + N w 

= 1 − C (2)

https://doi.org/10.1016/j.mechrescom.2019.01.001
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Fig. 1. Interfacial aeration along a stepped spillway chute. 
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here C is the time-averaged void fraction. Eqs. (1) and (2) as-

ume implicitly no-slip between the gas and liquid interfaces, a

uasi-steady streamtube velocity, and a significantly large num-

er of gas-liquid elements, all of these being reasonable assump-

ions in high-velocity free-surface flows, e.g. as in Fig. 1 . The total

umber of gas-to-liquid interfaces equals that of liquid-to-gas in-
erfaces. Considering the former, the average number of gas bub-

les detected by the probe sensor per second equals the bubble

requency F: 

 = NPr (a) Pr (w) = 

U aw 

λaw 

C(1 − C) (3)

here N is the average number of elemental interfaces detected by

he probe sensor per second and U aw 

the fluid velocity. Eq. (3) pre-

icts a quasi-parabolic relationship between bubble frequency and

ean void fraction across the gas-liquid column, thus a pseudo

inear relation between the root mean square of the instanta-

eous void fraction and the bubble frequency. An extended solu-

ion yields a relationship between bubble frequency and interfacial

urbulence intensity [18] . 

A few studies [7,11] discussed the use of spectral analysis per-

ormed on the phase-detection probe signal output. The power

pectral density (PSD) of a binary void fraction signal is defined

s the square of the discrete Fourier transform (DFT) coefficients:

 c = E 

(
FFT ( c ′ ) FF T 

∗( c ′ ) 
)

(4) 

here S c is the void fraction PSD, FFT is the fast Fourier transform,

denotes the complex conjugate, c’ is the instantaneous void frac-

ion deviation from the mean value, and E is the expectation oper-

tor. 

The shape of the void fraction PSD reflects contributions from

ll individual bubble/droplet sizes. The bandwidth of a bubble’s

ontribution to the PSD is inversely proportional to its physi-

al size. Namely, a small bubble/droplet contributes approximately

qually to all frequencies, while a large bubble/drop contributes

redominantly to the low frequency range. A theoretical analysis

hows that the void fraction power decays as 1/f 2 at the end of

he spectrum, where f is the frequency. Thus, a characteristic size

f the smallest gas bubbles may be defined as 1/f c , where f c is a

haracteristic frequency beyond which the PSD slope visually fol-

ows 1/f 2 . 

. Void fraction spectra 

The analysis of a single-sensor phase detection probe

 ∅ = 0.25 mm) was conducted in the stepped chute, and for

he flow conditions, shown in Fig. 1 A. The water discharge was

 = 0.071 m 

3 /s, the Reynolds number was Re = 2.8 × 10 5 , the

ertical cavity height was h = 0.10 m, and the chute slope was

 = 45 °. The phase-detection probe was sampled at 5 kHz for

80 s, as preliminary tests showed that a relatively long sampling

uration was important as part of the proposed technique. Fig. 3 A

hows the distributions of time-averaged void fraction and bubble

requency at step edge 12. The void fraction PSD was estimated

sing Welch’s [16] method. Each void fraction signal was first

ivided into 29 sub-segments, each of 1/15th the total length

f the signal, taken with a 50% overlap; each segment was then

ultiplied by a Hann window to reduce boundary effects before

alculating discrete Fourier transform (DFT) was calculated. The

nal result was taken as the average over the 29 total modified

SDs. The void fraction signals were thresholded and detrended

rior to computation. Fig. 3 B shows the void fraction spectrum

ata. In Fig. 3 B, let us note the variety of shapes displayed by

he PSD curves at different elevations. By the Wiener-Khinchin

heorem, S c (f) and R xx,c ( τ ) form a Fourier transform pair. Therefore

he area under each curve is proportional to the variance of the

ignal, equalling C(1-C) [14] . Thus, in the first approximation, the

ntegral ∫ S c df is proportional to the bubble frequency F. More

etails are presented in the Supplementary material Appendix I . 
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Fig. 2. Gas-liquid flow structure detected by a phase-detection needle probe. 
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The expected shape of a void fraction spectrum may be anal-

ysed theoretically by treating a binarised void fraction signal as a

linear superposition of pulse trains, each characterised by a unique

duration corresponding to the chord time of the bubbles under

consideration. The expected shape of the void fraction spectra

should follow: 

E ( S c (f) ) = 

1 

π2 f 2 N 

( 

N p ∑ 

i=1 

N bi sin 

2 (π f τci ) 

+ 

8 

π2 

N p −1 ∑ 

i=1 

N p ∑ 

j=i+1 

N i N j sin (π f τci ) sin (π f τcj ) 

) 

(5)

where N b is the total number of bubbles in a pulse train, N p is the

total number of pulse trains, N is the total length of the signal, f

is the frequency (horizontal axis of PSD data), and τ c is a unique

bubble chord time for each pulse train. The complete derivation is

shown in Supplementary material Appendix I . Eq. (5) holds for all

f � = 0, and the S c (0) term is simply zero if the data is detrended

before calculation (i.e. zero mean). In Eq. (5) , the shape of a void

fraction spectrum is the sum of contributions from each unique

bubble chord time as well as interactions between every pair of

chord times. A detailed interpretation of the properties of Eq. (5) is

developed in Supplementary material Appendix I . 

In summary, the dependence of E( S c (f)) on a single chord time

τ ci reflects the fact that a narrow (wide) band signal in the fre-

quency domain have a wide (narrow) counterpart in the time do-

main, namely: 

a) for τ ci ≈ 0 (very small bubbles/droplets), the contribution is ap-

proximately equal to all frequency components in the PSD; and
b) for τ ci > > 0 (very large bubbles/droplets), the contribution is

dominantly to the low frequency range in the PSD and decays

with 1/f 2 in the high frequency range; 

Consequently, the high frequency range of the PSD curve re-

ects contributions of small chord times, whereas the low fre-

uency range contains contributions of both small and large

hord times. Likewise, the interactions between the smallest bub-

les contribute approximately uniformly to the entire frequency

ange of the spectrum, while any interaction involving large bub-

les/droplets will be modulated by 1/f 2 . 

.1. Discussion 

Gonzalez [11] hinted that the void fraction spectrum may be

ivided into two zones about a characteristic frequency f c : i.e. f <

 c and f > f c , each representing the total energy in the signal due

o the largest and smallest length scales, where f c may be iden-

ified from a change in slope in the spectra. In the present study,

q. (5) suggests that both small and large length scales contributed

o the low frequency range of the spectrum. Rather, a characteris-

ic frequency f c may be defined as where the spectrum visually

ollows 1/f 2 . In such case, U aw 

/f c could be loosely interpreted as

he smallest air bubble length scale in the flow. 

In reference to Fig. 3 B, a preponderance of small chord times

s observed next to the step edge (red and black curves) and large

hord times are dominant in the spray zone (y/Y 90 > 1). The former

ase reflects the large rate-of-strain next to the step edge, where a

ignificant number of small bubbles are generated. The latter case

mplies a flow primarily consisting of water globules of large chord

izes. 
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Fig. 3. Void fraction distribution and spectra in a stepped chute flow - Q = 0.084 

m 

3 /s, Re = 3.4 × 10 5 , h = 0.10 m, θ = 45 °, step edge 12, Y 90 = 0.0518 m, V 90 = 4.10 m/s, 

F max = 272 Hz. 
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. Conclusion and future work 

The present study indicates that the void fraction PSD may be

sed to provide an alternative view of the air-water flow com-

osition, including a new way to interpret the information con-

ained in the PSD of a phase function signal. Information such as

he bubble count rate and characteristic air-water chord size can

e inferred. The void fraction distribution is implied by combin-

ng the bubble count rate and air-water chord size information:
.g. small bubble count rate and large chord size imply low void

raction. 

The dependence of the void fraction spectrum E(S i (f)) on a sin-

le chord time τ ci reflects the fact that a narrow (wide) band

ignal in the frequency domain have a wide (narrow) coun-

erpart in the time domain. The high frequency range of the

SD curve reflects contributions of small chord times, while the

ow frequency range contains contributions of both small and

arge chord times. Likewise, the interactions between the small-

st bubbles contribute approximately uniformly to the entire fre-

uency range of the spectrum, while any interaction involving

arge bubbles/drops will be modulated by 1/f 2 . Importantly, the

oid fraction spectra are a powerful tool in providing an alter-

ative view of the air-water flow composition. This method has

he advantage of aggregating a number of qualitative informa-

ion in one glance, including the bubble count rate and air-water

hord sizes. The void fraction might be inferred by combining

he bubble count rate and air-water chord size information (e.g.

mall bubble count rate and large chord size imply low void

raction). 
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On Void Fraction and Flow Fragmentation in Two-Phase Gas-Liquid Free-Surface Flows. 
Appendix I - Spectral properties of a binary void fraction signal 
by Gangfu Zhang (1,2) and Hubert Chanson (1) (*) 
(1) The University of Queensland, School of Civil Engineering, Brisbane QLD 4072, Australia 
(2) Presently: WSP Pty Limited, Brisbane, QLD 4000, Australia. 
(*) corresponding author, Ph: (61) 7 3365 3516, Fax: (61) 7 3365 4599, Email: 
h.chanson@uq.edu.au 
 
For a void fraction signal (Fig. 2) consisting of N samples at equal intervals Δt and assuming that 
the underlying process is wide-sense stationary, its power spectral density (PSD) may be estimated 
as: 

 

2k
2 i n

N
c

1
S(k) f (n)e

N

 
  for integers k = [0, 1, …, N/2] (I.1) 

where fc(n) is the void fraction sample at index n, i is the imaginary unit such that 2 1i   , and the 
absolute valued term is the discrete-time Fourier Transform (DFT) of the void fraction record fc(n). 
This is known as the periodogram estimate of the true PSD of the underlying random process. 
While Equation (I.1) is simple to compute, the variance of the periodogram does not tend to zero as 
N tends to infinity and it is therefore an inconsistent estimator of the true PSD (Oppenheim and 
Schafer 2010). Welch (1967) proposed that an improved estimate could be obtained by dividing the 
data into overlapping segments, calculating a modified periodogram for each, and averaging over 
the segments. Suppose that a record consists of possibly overlapping segments fc(n) each of size Ni, 
a modified periodogram for each segment is estimated as: 

 
i

i

2kN 1
2 i n

N
i ciN

n 02

n 1

1
S (k) f (n)W(n)e

W (n)

  





 


 for integers k = [0, 1, …, N/2] (I.2) 

where W(n) is an arbitrary window function. The PSD estimate is then the average over K such 
periodograms covering the length of the record: 

 
K

i
i 1

1
S(k) S (k)

K 

   (I.3) 

Figure 3 shows the distribution of PSDs in a stepped chute (flow conditions listed in figure 
caption). The results were obtained using the Welch’s method with a Hann window: 

 2 n
W(n) sin

N 1

    
 (I.4) 

where N is width of the window. The modified periodograms (Eq. (I.2)) were computed for 
subsamples of 1/15th of the total data length with a 50% overlap arbitrarily selected. The resulting 
PSD estimates were smoothed over every 50 points by delinearising the data, low pass filtering, and 
reinserting the trend following Press et al. (1986). Note that the void fraction signals were binarised 
(gas: fc(n)= 1; liquid: fc(n) = 0) using a single threshold technique and the data mean subtracted 
before computation. 
In Figure 3, the PSD curve at a given elevation is characterised by a distinctive trend and area under 
the curve. By the Wiener-Khinchin theorem, the area under each curve is proportional to the 
variance of the signal. Since the variance of a binary void fraction signal equals C(1-C) with C the 
time-averaged void fraction (Murai et al. 2006), the area under each curve is approximately 
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proportional to the bubble count rate. 
The trend of the PSD curves may be examined by first considering an idealised binary void fraction 
signal sketched in Figure I-1. The void fraction signal may be regarded as a linear superposition of 
void fraction pulse trains [fc1, fc2, …,fcN], each consisting pulses of a unique duration [τc1, τc2, …, 
τcN]. Under these settings each pulse on the ith pulse train is activated for a uniform duration τci, and 

ij
dT  denotes the time delay of the jth pulse on the ith pulse train measured from the centre of the pulse 

to the origin. The forward Fourier transform of the jth pulse on the ith pulse train is: 

 

ij
cid

ij
d

ij
cid

T /2
2 ifT2 ift ci

ij

T /2

sin( f )
FT (f ) e dt e

f


  



 
 

  (I.5) 

 

t(s)

Fnci

pulse width = τci

0

1

Tij  
Fig. I-1 - Idealised binary void fraction signal  
 
By the linearity property, it follows that the Fourier transform of the ith pulse train is: 

 
i ij

d ci

N
2 ifT ici ci

i i
j 1

sin( f ) sin( f )
FT (f ) e A e

f f
  



   
 

   (I.6) 

where Ni is the total number of pulses in the ith train, Ai is a characteristic amplitude, and φci is a 
characteristic phase such that: 

 

 

i i

i i

2 2
N N

2 ij ij
i d d

j 1 j 1

N 1 N
ij ik ij ik

i d d d d
j 1 k j 1
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

  

   
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 (I.7) 
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 
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 




 (I.8) 

where atan2 yields the argument of ciie   between –π and π. The Fourier transform of the entire void 
fraction signal consisting K pulse trains is: 

 
 

i

K
cii

i
i 1

sin f
FT(f ) A e

f




 


  (I.9) 
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By definition, the periodogram of the void fraction signal is calculated as: 

 

 

cjci

ci cj
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K K
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 (I.10) 

where N is the total number of points in the void fraction record and * denotes the complex 
conjugate. In Equation (I.7), if ij

dT  and ik
dT  are mutually independent and that the principle values of 

ij
d2 fT  and ik

d2 fT  are uniformed distributed over [-π, π] for all f ≠ 0 then: 

  
i iN 1 N

ij ik ij ik
d d d d

j 1 k j 1

E cos(2 fT )cos(2 fT ) sin(2 fT )sin(2 fT ) 0


  

 
      

 
   (I.11) 

where E is the expectation operator, and herein we assume ensemble average equals time average 
(i.e. ergodicity). Using Equation (I.11) and taking the expectation of Equation (I.10) yields: 

 
   

K K 1 K
2

i ci i j ci cj i j
i 1 i 1 j i 1

2 2

N sin f 2 N N sin( f )sin( f ) E cos( )

E S(f )
f N



   

 
         

 


 
 (I.12) 

The second expectation in the bracket is less obvious. Consider the bracketed term in Equation (I.8) 
and assuming that the principle values of ij

d2 fT  are uniformed distributed over [-π, π], it follows 

that the distributions of  ij
dsin -2 fT  and  ij

dcos -2 fT  are identical and symmetrical about zero. By 

the central limit theorem (Gnedenko and Kolmogorov 1949), the distributions of the sums of 
trigonometric terms each tends to a Gaussian in the limit of large Ni, and because the numerator and 
denominator are exactly correlated the two resulting Gaussian distributions have identical means 
and variances. Therefore the distribution of the bracketed term is the ratio between two identical 
Gaussians distributions, which assumes the shape of a standard Cauchy distribution (Papoulis and 
Pillai 2002): 

  11 1
CDF ( ) tan

2


    


 (I.13) 

where CDFχ(Χ) is the cumulative distribution function of the standard Cauchy distribution, where 
Χ denotes the bracketed term in Equation (I.8). To find the probability density function of the 
random variable Γ = tan-1(Χ), we first note that Pr(Γ ≤ γ) = Pr(tan(Γ) ≤ tan(γ)) = Pr(Χ ≤ tan(γ)) 
because tan-1(Χ) is a monotonically increasing function of Χ. Therefore the CDF of Γ is: 

 
1

CDF ( )
2


  


 (I.14) 

By differentiating with respect to γ, the left hand side of Equation (I.8) is found to be uniformly 
distributed between [-π/2, π/2]. Since φi and φj are independent, the PDF of Ζ = (φi – φj) is obtained 
directly by convoluting the distributions of φi and (–φj): 
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The solution is a triangular distribution with width 2π and height 1/π centred at the origin: 

 
2

Ζ

2

1
+ - <0

PDF (ζ)=
1

- 0 <

    
    
 

 (I.16) 

The last expected value in Equation (I.12) may now be evaluated from definition: 

 
0

2 2 2
- 0

1 1 4
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Finally, the expected value of the void fraction PSD is obtained by substituting Equation (I.17) into 
(I.12): 

  
K K-1 K

2
i ci i j ci cj2 2 2

i 1 i 1 j i 1

1 8
E S(f ) N sin ( f ) N N sin( f )sin( f )
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          

   (I.18) 

which shall hold for all f ≠ 0. The S(0) term corresponds to the mean of the data and will simply be 
zero if the data is detrended before calculation. 
To understand Equation (I.18), we first consider the shape of the PSD including only the 
contributions from individual chord times (i.e. the interactions between chord times are neglected): 

 
2

bi ci
i

sin( )
E ( )

N f
S f

N f

 


 
  

 
 (I.19) 

Hence the spectral shape for one chord time depends critically on the behaviour of the 
function ci cih( f ) sin( f ) / f      . By inspection, the properties of cih( f )   may be summarised as 

follows (herein only its behaviours for f ≥ 0 are considered). cih( f )   has zero crossings 

at  ci ci cif f Z | f 0      ; cih( f )   has a global maximum of one at cif 0   (or f 0 ) (apply 

L’Hopital's rule); cih( f )   has a global minimum of ci /   at cif 3 / 2  ;  cih( f )   is modulated 

by 1/ f ; cih( f )  has the Taylor series expansion. 

Using the last result, it can be shown that cih( f )   is approximately a constant next to the origin: 

 
 2

ci
ci

f
h( f ) 1 1

3!

 
      for fτci → 0  (I.20) 

The conclusion from the above properties shows that the contribution to the PSD by a single chord 
time τci is approximately a constant for fτci → 0, and decays with 1/f2 for fτci → ∞. 
With these in mind, the dependence of E(Si(f)) on τci  is summarised as follows. For τci ≈ 0, fτci ≈ 0 
for all f; therefore a small chord time contributes approximately equally to all frequency 
components on the PSD curve. For τci >> 0, fτci >> 0 for all f; thus a large chord time contributes 
dominantly to the low frequency range of the PSD curve and decays rapidly with 1/f2. For 
intermediate cases the effects are in between. 
As a result, the high frequency range of the PSD curve reflects contributions of small chord times, 
while the low frequency range contains contributions of both small and large chord times. 
Using the same methodology, the interactions between each pair of gas/liquid chord times may be 
studied by analysing the term: 
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  2

ci ci cjg( f ) sin( f ) sin( f ) / f         (I.21) 

The Taylor series approximation of Equation (I.21) at the origin up to the second order is: 
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 for fτci → 0 (I.22) 

By inspection of Equation (I.22), the interactions between the smallest bubbles contribute 
approximately uniformly to the entire frequency range of the spectrum ( cig( f ) 1   ), while any 

interactions involving large bubbles will have an effect that decays with 1/f2. 
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