Interactions between turbulent waters and the atmosphere may lead to some air-water mixing, often called ‘white water’. This study reviews the basic entrainment processes for a wide range of flow situations and presents new evidence leading to a better understanding of the basic multiphase flow dynamics. The focus is on flow situations characterised by very-strong air-water interactions: e.g., vertical plunging jet, stepped chute flow, plunging breaker. The two basic entrainment mechanisms are local and interfacial aeration. In a local aeration process, air is entrapped at the singularity/discontinuity between the impinging jet and the receiving pool of water. At low jet velocities, the bubbles are entrained individually white, at high jet impact velocities, an elongated air cavity is set into motion between the entrained fluid and the jet flow. At impingement, air is entrapped by a Couette flow mechanism. Interfacial aeration occurs when turbulent velocity fluctuations acting next to the free-surface become large enough to overcome surface tension and buoyancy. The sizes of the bubbles and droplets extend over several orders of magnitude. Void fraction distributions may be modelled by advectivediffusion models. Turbulence intensity measurements suggest high levels of turbulence across the entire air-water flow, of one to two orders of magnitude greater than in monophase flows. In coastal engineering, air entrainment is characterised by unsteadiness and high levels of aeration. The results demonstrate that air entrainment in coastal and oceanic zones is an important process and cannot be ignored.

1 Introduction

The interactions between flowing waters and the atmosphere may lead to strong air-water mixing and complex multiphase flow situations. Such air-water flow mixtures are called self-aerated flows, free-surface aerated flows and ‘white water’\(^a\). The latter is the non technical term used to design the entrainment of air in turbulent flows (figure 1). The ‘whitish’ appearance of the flow is given by the refraction of light on the entrained air bubbles. Well-

\(^a\) Self-aeration is called Selbstbedärfung in German, and Aération, Ventilation naturelle or Insufflement in French.
\(^b\) Eau blanche in French
known ‘white water sports’ include canoe, kayak and rafting racing down swift-flowing turbulent waters.

Figure 1. Interactions between strong turbulence and free-surface leading to “white water”.
Top left: water jets and cascading waters, Baséin de Latone, Versailles (France) in June 1998. Top right: spillway flow at La Grande 2 (Canada), flow from right to left (Courtesy of M. Lefebvre). Bottom left: wave breaking and reflection at high tide, Val-André (France) (Courtesy of Mrs Chanson). Bottom right: surfer on the roller of a hydraulic jump, München (Germany) (Courtesy of D. Young).

Man has been fascinated by white water for centuries. The Greeks, Romans, Muslims and Mughals built numerous fountains and cascades. Flowing ‘white water’ enhanced the perception of the sites by bringing light and captivating views (figure 1 top left). Famous examples include the Tivoli garden in Italy, Nishat Bagh in India (‘Garden of Gladness’), the ‘Grandes Cascades’ of Rueil, Marly and Versailles (Chanson 1998). A superb design was the Chadar developed by the Mughals. The steep channel (α ~ 25° to 30°) had a very-rough invert to maximise free-surface aeration and sunlight reflection (e.g. Plumpire 1993, Chanson 1997, pp. 10-11).

Air-water flows have been studied only recently, compared to basic fluid mechanics. Although early observations of ‘white water’ include Leonardo da Vinci (1452-1519), Wen Cheng Ming (1470-1559), and Katsushita Hokusai (1826-1833), the first successful experiments were those of Ehrenberger (1926) and later the works led by L.G. Straub (e.g. Straub and Anderson, 1958). Since the 1960s, numerous researchers studied gas entrainment in liquid flows. Most studies focused onto low void fractions (U < 5%). Few research projects have been engaged in strongly-turbulent flows associated with strong free-surface aeration.

1.1 Basic definitions

Air entrainment, or free-surface aeration, is defined as the entrainment/entrainment of un-dissolved air bubbles and air packets that are carried away within the flowing fluid. The resulting air-water mixture consists of both air packets within water and water droplets surrounded by air. It includes also spray, foam and complex air-water structures. Turbulence is a phenomenon characterised by an unpredictable motion and a broad spectrum of length scales. Turbulent flows are characterised by chaotic motion with strong mixing properties. At any point, the fluid velocity changes continuously in both magnitude and direction. The term shear flow characterises a flow with a velocity gradient in a direction normal to the mean flow direction and in which momentum is transferred from the region of high-momentum to that of low-momentum. The term advective diffusion of air (or turbulent diffusion of air bubbles) describes the movement of bubbles from a region of higher void fraction to one of lower air concentration caused by turbulent mixing.

There are two basic types of air entrainment process. The entrainment of air packets can be localised (also termed local aeration) or continuous along the air-water interface (figure 2). Examples of local aeration include air entrainment by plunging jet and at hydraulic jump (figure 1, bottom right). Air bubbles are entrained locally at the intersection of the impinging jet with the surrounding waters (figure 2 top). The intersecting perimeter is a singularity, and air is entrapped at the discontinuity between a high-velocity jet flow and the receiving pool of water. Interfacial aeration (or continuous aeration) is defined as the air entrainment process along an air-water interface, usually parallel to the flow direction: e.g., in chutes flows (figure 1 top right, figure 2 middle). An intermediate case is a high-velocity water jet discharging into air. The nozzle is a singularity, characterised by a high rate of aeration, followed by some interfacial aeration downstream at the jet free-surface (figure 1 top left, figure 2 bottom).
It is the aim of this work to review the basic entrainment processes for a wide range of flow situations, and to present new evidence leading to a better understanding of the basic multiphase flow dynamics. The basic mechanisms of air entrainment differ substantially between local aeration and interfacial aeration. Both types of aeration are reviewed. Each case is illustrated by basic flow configurations: i.e., vertical plunging jet and stepped chute flow respectively. The structure of the air-water flows is described, and applications to coastal processes are discussed.

2 Local (singular) aeration mechanism: air entrainment at plunging jets

2.1 Flow patterns

With local (singular) aeration, air entrainment results from some discontinuity at the impingement point/perimeter: e.g., plunging water jets, hydraulic jump flows. One basic example is the vertical plunging jet (figure 2, top). At the plunge point, air may be entrapped when the impacting flow conditions exceed a critical threshold (McKeogh 1978, Ervine et al. 1980, Cummings and Chanson 1999).

McKeogh (1978) showed first that the flow conditions at inception of air entrainment are functions of the jet turbulence level. For a given plunging jet configuration, the onset velocity increases with decreasing jet turbulence. For water jets, the dimensionless onset velocity may be correlated by:

\[
\frac{V_e \mu}{\sigma} = 0.106(1 + 3.375 \exp^{-0.87T_u})
\]

where \(V_e\) is the onset velocity, \(\mu\) is the liquid dynamic viscosity, \(\sigma\) is the surface tension and \(T_u\) is the ratio of the standard deviation of the jet velocity fluctuations about the mean to the jet impact velocity (Cummings and Chanson 1999). Equation (1) is compared with experimental data obtained in large-scale plunging jets in figure 3. It must be noted that the quantitative results depend critically upon the subjective definition of air inception and the duration of the investigation period. The writer conducted experiments in a 12-mm vertical supported jet and in a 25-mm vertical circular jet. For investigation periods ranging between 5s and 500s, the onset velocity was found to increase with decreasing investigation period by a factor of 3 to 4. Note that the onset conditions may be also affected by large roughness at the surfaces of the impinging jet (Zhu et al., 1998).

*Their work was conducted with thin jets (d = 5mm) and large relative roughness: i.e.,

\[k_e/d > 0.1\] where \(k_e\) is the equivalent roughness height and \(d\) is the circular jet diameter.
For jet impact velocities slightly larger than the onset velocity, air is entrained in the form of individual bubbles and packets. The entrained air may have the form of ‘kidney-shaped’ bubbles which may break up into two ‘daughter’ bubbles, ‘S-shape’ packets, or elongated ‘fingers’ that may break-up to form several small bubbles by a tip-streaming mechanism, depending upon the initial size of the entrained air packet (Cummins and Chanson, 1999). The air entrainment rate is very small, hardly measurable with intrusive probes.

At higher impact velocities, the amount of entrained air becomes significant and the air diffusion layer is clearly marked by the white plume generated by the entrained bubbles. Air entrainment is an unsteady, rapidly-varied process. An air cavity is set into motion between the impinging jet and the surrounding fluid and it is stretched by turbulent shear (figure 4) (Chanson, 1997). The air cavity behaves as a ventilated air sheet and air pockets are entrained by discontinuous gusts at the lower tip of the elongated air cavity. Initial aeration of the impinging jet free-surface may further enhance the process (Van de Sande and Smith, 1973; Brattberg and Chanson, 1999).

2.2 The entrainment region (or very-near flow field)

In the very-near flow field, the flow is dominated by air entrainment and the interactions between gas and liquid entrainment (figure 4). Dominant flow features include an induction trumpet generated by the liquid entrainment and the elongated air cavity at jet impingement (thickness d_{1}). The very-near flow region extends for about $(x - x_{1})/d_{1} < 5$, where $(x - x_{1})$ is the depth below the free-surface and d_{1} is the jet thickness at impact (figures 2 and 4). Detailed measurements were conducted in a vertical supported jet with inflow velocity ranging from 2 to 4 m/s (table 1). Air-water flow measurements were performed with hot-film and resistivity probes (Chanson and Brattberg, 1998).

Experimental observations showed that the air entrainment/entrainment process is very dynamic and it interacts substantially with the transfer of momentum across the mixing layer. Although the void fraction and mean velocity distributions exhibit smooth shapes, instantaneous velocity measurements showed a highly unstable air-water mixing layer. The shape and position of the elongated air cavity evolve very rapidly with time, and there is a distinct velocity discontinuity between the impinging jet flow and the induction trumpet. Such a discontinuity is sketched in figure 4 which shows an instantaneous ‘snapshot’ of the entrainment region. Experimental data, summarised in table 1, indicate a velocity discontinuity across the elongated air cavity: $V_{t} \propto (V_{1} - V_{d})^{0.15}$, where V_{1} is the jet impact velocity and V_{d} is the liquid entrainment velocity (in the induction trumpet).

The writer hypothesises that air entrainment takes place predominantly in the elongated cavity by a Couette flow motion (figure 4, right). The amount
of entrained air q_{air} may be estimated as:

$$q_{air} = \int_{d_1}^{d_{air}} V_{air} dy \frac{V_i}{2} \delta_{d_1}$$

(2)

Equation (2) compares favourably with entrained air flux measured below the free-surface in table 1, columns 8 and 7 respectively. (The air flux data were recorded by Brattberg and Chanson, 1998). The close agreement between Equation (2) and data confirms the basic entrainment mechanism.

Discussion

Some researchers (Lezzi and Prosperetti, 1991; Bonetto et al., 1994) proposed various theoretical models of the air entrainment process by elongated air cavity. These however do not agree with experimental observations of the very near flow field (table 1). It is believed that the erroneous results reflect a lack of understanding of the basic entrainment mechanisms and of the interactions between turbulent shear and entrained bubbles.

<table>
<thead>
<tr>
<th>Run</th>
<th>d_1 m</th>
<th>V_i m/s</th>
<th>V_{air}/q</th>
<th>q_{air}/q</th>
<th>Calc. eq.(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>HF-2</td>
<td>0.069</td>
<td>2</td>
<td>0.65</td>
<td>0.011</td>
<td>-</td>
</tr>
<tr>
<td>HF-3</td>
<td>0.011</td>
<td>3</td>
<td>0.76</td>
<td>0.0020</td>
<td>0.14</td>
</tr>
<tr>
<td>HF-3</td>
<td>0.016</td>
<td>4</td>
<td>0.76</td>
<td>0.0030</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 1. Experimental observations of the entrainment region at a vertical jet. Note: V_i: induction trumpet velocity; d_{air}: free-surface aeration of the falling jet (or pre-entrainment); each data is the average of three cross-sectional profiles.

2.3 Adveotive diffusion

Downstream of the entrainment region (i.e. $(x-x_1)/d_1 > 5$), the distributions of void fractions exhibit smooth, derivative profiles (figure 5). For a wide range of flow conditions ($2 < V_i < 9$ m/s) and jet geometry, the data may be fitted by simple analytical solutions of the advective diffusion equation for air bubbles (Chanson, 1997). For two-dimensional vertical jets, it yields:

$$C = \frac{\frac{V_{max}}{y}}{\sqrt{4\pi D^#}} \cdot \frac{1}{\frac{C_{max}}{Y_{C_{max}}}} \left[\exp \left(-\frac{(y - \frac{1}{2})^2}{4D^#} \right) \cdot \frac{1}{C_{max}} \right]$$

(3)

where $D^#$ is a dimensionless air bubble diffusivity and $Y_{C_{max}} = \frac{q}{C_{max}}$ (Cummings and Chanson, 1997). Cummings and Chanson (1997b) and Brattberg and Chanson (1998) presented successful comparisons between equation (3) and experimental data.

With circular plunging jets, the analytical solution of the diffusion equation becomes:

$$C = \frac{q_{air}}{q} \cdot \frac{1}{4D^#} \cdot \frac{\frac{r}{2}}{Y_{C_{max}}} \cdot \exp \left[-\frac{1}{4D^#} \cdot \frac{(r - \frac{1}{2})^2}{C_{max}} \right]$$

(4)

where I_0 is the modified Bessel function of the first kind of order zero. In figure 5, equation (4) is compared with experimental data obtained in a 25-mm diameter vertical plunging jet.

Figure 5 shows also dimensionless distributions of bubble count rate, where the bubble count rate F is defined as the number of bubbles impacting the probe tip per second. For a given void fraction and velocity, the bubble count rate is inversely proportional to the (number) mean bubble diameter and directly proportional to the air-water specific interface area. Figure 5 illustrates that the maximum bubble count rate occurs in the inner jet region, i.e., at a distance from the jet centreline that is smaller than the location $Y_{C_{max}}$ where the void fraction is maximum. The result is observed consistently with both two-dimensional and circular plunging jets (Brattberg and Chanson, 1998; Present study). It highlights that the relationship between void fraction and bubble count rate is not unique in plunging jet flows. Brattberg and Chanson (1998) assumed that the result was caused by "the non-occurrence between the air bubble diffusion layer and the momentum shear layer", shown by Cummings and Chanson (1997) and Brattberg and Chanson (1998) in two-dimensional jets.

3 Interfacial aeration process: self-aeration down a stepped cascade

3.1 Introduction

Examples of interfacial aeration include spillway flows and ‘white water’ down a mountain stream (figure 1 and 6). One case, the cascading waters down a stepped chute, is characterised by very-energetic turbulence and free-surface aeration (figure 6, bottom). Considering a given stepped geometry, low flows behave as a succession of free-falling nappes (called nappe flow regime), and little aeration is observed. With increasing flow rates, a transition flow regime
observed and the flow resistance is form drag predominantly.

In both transition and skimming flows, the upstream flow is non-erated but free-surface instabilities are observed. Similar wave instability were discussed by Anwar (1993) and Chanson (1997). The location of the inception of free-surface aeration is clearly defined however (Figure 6, bottom). Downstream the flow becomes rapidly erated. At Trigoni dam, the chute sidewalls were overtopped during the flood event. In this section, the stepped chute flow is used to illustrate the complex interactions between strong turbulence and interfacial aeration. The discussion is based upon new experimental results obtained in a large-size stepped chute: i.e., 1 m wide, 3 m long, 0.1 m high steps, 21.8° mean invert slope and flow rates up to 300 l/s.

3.2 Definition of the ‘free-surface’

Keulegan and Patterson (1940) analysed wave instability and implied that air bubbles may be entrained by a breaking wave mechanism at the free surface. Photographs by Cain (1978) at Aviemore dam spillway showed that air is entrained by the action of a multitude of irregular vortices acting next to the free-surface. Basically air bubble entrainment is caused by turbulence fluctuations acting next to the air-water free surface. Through this interface, air is continuously trapped and released. Air bubble may be entrained when the turbulent kinetic energy is large enough to overcome both surface tension and gravity effects. The turbulent velocity be greater than the surface tension pressure and the bubble rise velocity component for the bubbles to be carried away:

$$v' > \text{Maximum} \left(\sqrt{\frac{8\sigma}{\rho d_b}} \right)$$

where v' is an instantaneous turbulent velocity normal to the flow direction, σ is the surface tension, ρ is the water density, d_b is the diameter of the entrained bubble, u_r is the bubble rise velocity and α is the channel slope (Ervine and Falvey, 1987; Chanson, 1993). Equation (5) predicts the occurrence of air bubble entrainment for $v' > 0.1$ to 0.3 m/s. The condition is nearly always achieved in stepped chute flows because of the strong turbulence generated by the stepped invert (see section 3.5).

Interfacial aeration involves both the entrainment of air bubbles and the formation of water droplets. When free-surface aeration takes place, the exact location of the interface between the flowing fluid and the above atmosphere becomes undetermined (Figure 6). There is however continuous exchanges of air-water and of momentum between the flowing waters and the atmosphere.
The writer defines the interface between the air-water mixture flow and the atmosphere as the iso-void fraction line $C = 90\%$. Model and prototype data showed that the air-water flow behaves as a homogeneous mixture for $C < 0.50$ with smooth, continuous distributions of void fraction, air-water velocity and bubble count rate (Wood, 1991; Chanson, 1997). For larger void fractions (i.e. $C > 90\%$), the air-water mixture is a fine spray, sometimes behaving as a series of free-fall particles (figure 6, left).

The air-water mixture consists of water surrounding air bubbles ($C < 30\%$), air surrounding water droplets ($C > 70\%$) and an intermediate flow structure for $0.3 < C < 0.7$ (figure 2). In regions of low air contents ($C < 0.3$) the flow has a bubbly mixture appearance. At larger air contents ($C > 0.3$), the multiphase flow structure becomes more complex with several types of air-water structures: e.g., air-water projections, foam. Rein (1998) and Chanson (1999) discussed specifically the spray region (i.e. $C > 95\%$). Waves and wavelets propagate also downstream along the free-surface (4\>). A phase detection probe, fixed in space, will record a fluctuating signal corresponding to both air-water structures and wave passages, adding complexity of the interpretation of the signal (Toombes, 2002).

3.3 Advection diffusion of air bubbles

Downstream of the inception point of free-surface aeration, air and water are fully mixed, forming a homogeneous two-phase flow (Chanson, 1995; 1997). The advective diffusion of air bubbles may be described by simple analytical models (Appendix I). In transition flows, the distributions of void fraction follow closely:

$$C = K' \left[1 - \exp \left(-\lambda \frac{y}{Y_{90}} \right) \right] \quad \text{Transition flows} \quad (6)$$

where y is the distance measured normal to the pseudo-invert, Y_{90} is the characteristic distance where $C = 90\%$, K' and λ are dimensionless functions of the mean air content only. Equation (6) compares favourably with experimental data (figure 7 top) but for the first step edge downstream of the inception point of free-surface aeration and for the deflecting jet flow.

4Most aerated chute flows are supercritical and wavelets can only propagate into the downstream direction.
where \(K' \) is an integration constant and \(D_0 \) is a function of the mean void fraction only. In figure 7 (bottom), laboratory data are compared successfully with equation (7). Although figure 7 highlights different shapes of void fraction distribution between transition and skimming flows, equations (6) and (7) derive from the same basic equation assuming different diffusivity profiles (Appendix 1).

Figure 8 presents dimensionless distributions of bubble count rates \(F_d/V_c \), where \(d_c \) is the critical depth and \(V_c \) is the critical flow velocity. The data are compared with a parabolic shape. The results show that the relationship between the bubble frequency and void fraction is unique, in both transition and skimming flows. Toombe (2002) demonstrated the unicity of the relationship and he proposed a sophisticated model comparing favourably with experimental data obtained in water jets discharging into air, smooth-chute flows and stepped chute flows (e.g. Brattberg et al., 1998; Chanson, 1997b; Present study).

In skimming flows, the air concentration profiles may be modelled by:

\[
C = 1 - \tanh^2 \left[K' - \frac{y}{Y_m} + \frac{y}{Y_m} \cdot \frac{1}{3} \cdot \frac{1}{Y_m} \cdot \frac{1}{3} \right] \quad \text{Skimming flows} \quad (7)
\]
3.4 Characteristic bubble/droplet sizes

Details of the air-water flow structure may be gained from bubble and droplet size measurements. Figures 9 and 10 present normalised chord length probability distribution functions. (Measurements were conducted with a fine resistivity probe (25 μm # sensor.) In figures 9 and 10, each histogram column represents the probability of a bubble/droplet chord length in 0.5 mm intervals: e.g., the probability of a chord length from 2.0 to 2.5 mm is represented by the column labelled 20. The last column (i.e., > 20) indicates the probability of bubble/droplet chord lengths larger than 20 mm. Figure 9 presents data obtained in a transition flow for the same flow rate as in figures 7 (top) and 8. Figure 10 shows skimming flow data for the same discharge as in figure 7 (bottom).

The results show a broad spectrum of bubble and droplet chord lengths at each location: i.e., from less than 0.5 mm to larger than 20 mm (figures 9 and 10). The chord length distributions are typically skewed with a preponderance of small bubble/droplet sizes relative to the mean. The probability of air bubble chord lengths is the largest for bubble sizes between 0 and 1.5 mm for $C \approx 0.1$ and between 0 and 2.5 mm for $C \approx 0.2$. It is worth noting the amount of bubbles larger than 20 mm for $C \approx 0.2$ in skimming flows. These might be large air packets surrounding water structures. Although water droplet chord length distributions appear skewed with a preponderance of small drops sizes relative to the mean, the distributions differ from bubble chord length distributions for similar liquid and void fractions respectively. For a given void/liquid fraction, the droplet chord mode and mean are larger than the corresponding bubble chord length data (figures 9 and 10).

3.5 Turbulent velocity field

Air-water velocity distributions are presented in Figure 10 in terms of the time-averaged air-water velocity V and a modified turbulence intensity T_u'. The data were measured with a dual-tip resistivity probe and details of the processing technique are given in Appendix II. Although T_u' is not exactly equal to the turbulence intensity, it provides some qualitative information on the turbulence level in the flow. Figures 11 and 12 include transition and skimming flow data for the same flow conditions as in figures 7, 8, 9 and 10. The velocity data compare favourably with a power law in skimming flows (figure 12). In figures 11 and 12, the distributions of turbulence intensity T_u' exhibit relatively uniform profiles implying high turbulence levels across the entire air-water flow mixture (i.e., $0 \leq y \leq y_{50}$). The trend is observed in both skimming and transition flows, and it differs significantly from well-known turbulence intensity profiles observed in turbulent boundary layers (e.g., Schlichting, 1979). It is believed that, on stepped chutes, the high rate of energy dissipation, associated with form drag generated by the steps, contributes to strong turbulent mixing throughout the entire flow. Although
the quantitative values of turbulence intensity $T'w'$ are large ($\sim 100\%$), they are of the same order of magnitude as turbulence levels measured in the developing shear region of plunging water jets with hot-film probes (Chanson and Brattberg, 1998).
4 Applications to coastal processes: unsteady air entrainment at pluming breakers

4.1 Presentation

In oceanic and coastal regions, air bubble entrainment by breaking waves is a significant factor under high wave conditions. A dominant feature is the unsteadiness of the process and the widespread surface area of ‘white capping’ during storms (figure 13). Air bubble entrainment at breaking waves contributes significantly to air-sea mass transfer because the net surface area of thousands of tiny bubbles is much greater than the surface area above the bubble clouds. This is an important process for the exchange of nitrogen, oxygen and carbon dioxide between atmosphere and oceans. One type of breakers, the pluming breaking wave, has the potential to entrain a very large amount of air bubbles at great depths. At a pluming breaker, bubble entrainment is caused by the top of the wave forming a water jet projecting ahead of the wave face and entraining air when it impacts the water free-surface in front of the wave. In shallow water, the pluming breaking process is affected by the sloping bottom but air bubble entrainment is still significant.

Figure 13. Air entrainment at breaking waves on the Enoshu coast, Japan on 21 Jan. 2001 with a strong wind parallel to the beach.

The entrained bubbles induce firstly a rise in water level associated with an energy transfer into potential energy while breaker-generated waves propagate in off-shore/onshore directions (e.g. Fuhrboter, 1970). However the influence of entrained air on the wave field near the surf zone has not been well investigated except for some research on energy dissipation by wave breaking. The air bubble entrainment process is improperly scaled by a Froude similarity (Wood, 1991; Chanson, 1997) and most laboratory experiments tend to underestimate its effects. In the following paragraphs, the unsteady air entrainment process at a pluming breaker is discussed based upon near-full-scale work conducted by Chanson et al. (1999; 2000) (*).

4.2 Unsteady air-water flow patterns

The initial jet impact was associated with strong splashing of short duration (i.e. less than 0.4 s) and the generation of a downward underwater bubble plume. The splashing was characterized by small liquid fractions (i.e. < 2%) and some droplets travelled up to 2.5-m from the impact point and reached heights in excess of 0.4 m above the initial free-surface level. A similar splashing process was observed, in field and laboratory, during the initial stage of the pluming breaking wave (e.g. Tulin and Waseda, 1999).

Below the free-surface, the initial bubble entrainment formed a densely populated ‘bubble plume’ travelling downwards until it reached the bottom and then propagated parallel to the bed with clear-water above as the plume front expanded with rising bubbles (figure 14). The mechanism was of short duration (< 1 sec. for 0.4 m water depth) and the plume travelled horizontally up to x/d = 3, where d is the initial water depth. Slow motion pictures suggested that the celerity of bubble plume front was about 30 to 45% of the jet impact velocity during both the downward and horizontal motions. Figure 14 presents two underwater photographs of the horizontal propagation of the bubbly plume toward the camera.

This rapid sequence of events was followed by the development of a ‘boiling’ flow next to the pluming point. This region was extremely turbulent with a lot of entrained air bubbles and it had the same appearance as a hydraulic jump roller. The roller/boiling flow pattern lasted typically 50% longer than the pluming jet. Visually most entrained air bubbles disappeared after about

*The pluming jet of the breaker was modelled by an unsteady water jet (0.75–m by 0.97–m) discharging into a wave flume with initial depths ranging from 0.2 to 0.5m. For some experiments, air entrainment was suppressed (by a factor of 2 to 3) to investigate specifically the effects of air entrainment at breaking. The model only simulates part of the breaker since it does not have a horizontal velocity relative to the still water.
3 to 4 times the breaker duration, although fine bubbles were still seen several minutes after the experiment end.

Shortly after nappe impact, a positive surge propagated into the wave flume. When air entrainment was suppressed, the free-surface levels, measured at several locations along the flume, were in close agreement with theoretical results deduced from the continuity and momentum principles, and from the equations of Saint-Venant (Chanson et al., 1999).

4.3 Effects of air entrainment
At a plunging breaker, a significant flow bulking (i.e. water level rise) was observed next to the nappe impact; the water level data were consistently higher than theoretical predictions. The differences implied an average void fraction of nearly 12% next to the nappe impact and about 4 to 6% at about 1 m downstream of the nappe impact for the duration of the breaker (figure 14). The impact on the water level rise is the greatest in shallow waters while the contribution to air-sea mass transfer is maximum in deep waters.

The wave data analysis suggested further that air entrainment affected the wave field, in particular the more energetic waves. Higher water levels were observed in the early stages, followed by lower water levels. The initial water level rise was caused by the entrained bubbles while the subsequent drop in water level was induced by a strong circulation associated with the upwelling current due to bubble rise, the time scale of which was almost linear to the water depth (i.e. the rise time of the bubbles).

4.4 Discussion
Wave breaking near the coastline is often associated with significant sediment transport and the resulting flow becomes a three-phase flow: gas (air), liquid (water) and solid (sediment). The challenges ahead of fluid dynamics experts will be to comprehend the interactions between the three phases. In this
case study, physical modelling was conducted in a large-size facility because the breaking process cannot be modelled analytically nor numerically in a simple manner. In laboratory, the flow parameters can be controlled but the selection of the model scale is critical to minimise scale effects. For example, in the field, a 0.2-m high breaking wave will be characterised by some air entrainment while a 1:4 scale model of the same wave will not. It must be emphasised that the study modelled incompletely a plunging breaker since the plunging jet a horizontal velocity component.

5 Summary and Recommendations

In Nature, strong turbulence acting next to a free-surface is often characterised by free-surface aeration and ‘white water’. There are two basic mechanisms of air bubble entrainment: local (singular) aeration and interfacial aeration. Both are reviewed in situations where the void fractions and turbulence levels are very-significant.

In a local aeration process, air is entrapped at the singularity (discontinuity) between the impinging jet and the receiving pool of water. At low jet velocities, the bubbles are entrained individually and the entrained air packets may subsequently be broken up into smaller bubbles by turbulent shear. At high jet impact velocities, an elongated air cavity is set into motion between the entrained fluid and the jet flow. Air is entrapped into a Couette flow motion. Downstream, the distribution of air bubbles may be predicted accurately with simple advective diffusion models.

Interfacial aeration occurs when turbulent velocity fluctuations acting next to the free-surface become large enough to overcome surface tension and buoyancy. One extreme case, the stepped cascade flow, is characterised by strong turbulence and aeration. The sizes of the bubbles and droplets extend over several orders of magnitude. Chord length distributions are typically skewed with a preponderance of small bubble/droplet sizes relative to the mean, but droplet and bubble size distributions have different shapes for identical liquid and void fractions respectively. Void fraction distributions may be modelled by advective diffusion models. Turbulence intensity measurements suggest high levels of turbulence across the entire air-water flow, with a magnitude greater than in monophase flows.

In coastal engineering, air entrainment is characterised by unsteadiness. A large size experiment showed new air-water flow features and high levels of aeration. The results demonstrate that air-entrainment in the surf zone is an important process and it cannot be ignored.

Acknowledgments

The writer thanks Dr S. Aoki, Ms Y.H. Chou, Dr R. Manasseh, Dr L. Toombes, for their help and assistance. He further acknowledges the assistance of his students B. Bolden, T. Bratberg, M. Eestman, T. McGibbon, M. Maruyama, N. Van Schagen.

Appendix I - Air bubble diffusion in self-aerated chute flows

In supercritical flows, ‘white water’ occur when turbulence acting next to the free-surface is large enough to overcome both surface tension for the entrainment of air bubbles and buoyancy to carry downwards the bubbles. Assuming a homogeneous air-water mixture for $C < 90\%$, the advective diffusion of air bubbles may be analytically predicted. At uniform equilibrium, the continuity equation for air in the air-water flow yields:

$$\frac{\partial}{\partial y} \left(D_y \frac{\partial C}{\partial y} \right) = \cos \alpha \frac{\partial}{\partial y} \left(u_r C \right)$$ (1.1)

where D_y is the turbulent diffusivity, u_r is the bubble rise velocity, α is the channel slope and y is measured perpendicular to the mean flow direction. In a fluid of density $\rho(1 - C)$, the bubble rise velocity equals:

$$u_r^2 = \left[(u_r)_{Hg} \right]^2 (1 - C)$$ (1.2)

where $(u_r)_{Hg}$ is the rise velocity in a hydrostatic pressure gradient. A first integration of the continuity equation for air in the equilibrium flow region leads to:

$$\frac{\partial C}{\partial y} = \frac{1}{D'} C \sqrt{1 - C}$$ (1.3)

where $y' = y / Y_{90}$ and D' is a dimensionless turbulent diffusivity. Assuming a homogeneous turbulence across the flow (i.e. D' constant), Chanson (1996; 1997) obtained:

$$C = 1 - \tanh^2 \left(K' \frac{y'}{2D'} \right)$$ (1.4)

where K' is an integration constant. Equation (1.4) was shown to fit well model and prototype data (Chanson, 1995).
More refined models of void fraction distributions may be developed assuming a non constant diffusivity (equations (6) and (7)). In transition flows, experimental data are best fitted by equation (6) assuming:

\[D' = \frac{C \sqrt{1 - \frac{C}{\lambda (K - C)}}}{\lambda (K - C)} \].

(II.5)

In skimming flows, the following diffusivity profile provides a good agreement with data (equation (7)):

\[D' = \frac{D_0}{1 - 2 \left(\frac{\nu}{\nu_0} - \frac{1}{2} \right)^2} \].

(II.6)

Appendix II - Velocity measurements and cross-correlation techniques for dual-tip probe measurements in gas-liquid flows

In turbulent gas-liquid flows, a velocity measurement technique is based upon the successive detection of bubbles/droplets by two sensors: i.e., double tip optical and resistivity probes (figure II.1). The technique assumes that:

1. the probe sensors are aligned along a streamline,
2. the bubble/droplet characteristics are little affected by the leading tip, and
3. the bubble/impact impact on the trailing tip is similar to that on the leading tip.

![Figure II.1. Sketch of a cross-correlation function and dual-tip probe.](image)

In highly turbulent gas-liquid flows, the successive detection of a bubble by each probe sensor is highly improbable, and it is common to use a cross-correlation technique (e.g. Crowe et al., 1998, pp. 309-318). The average air-water velocity is defined as:

\[V = \frac{\Delta x}{T} \]

(II.1)

where \(\Delta x \) is the distance between probe sensors and \(T \) is the travel time for which the cross-correlation function is maximum; i.e., \(R(T) = R_{max} \) where \(R \) is the normalised cross-correlation function and \(R_{max} \) is the maximum cross-correlation value (figure II.1).

The shape of the cross-correlation function provides further information on the turbulent velocity fluctuations. Flat cross-correlation functions are associated with large velocity fluctuations around the mean and hence large turbulence intensity \(T_u = \frac{u'}{V} \), where \(u' \) is the standard deviation of the turbulent velocity fluctuations. Thin high cross-correlation curves are characteristics of small turbulent velocity fluctuations. The information must be corrected to account for the intrinsic noise of the leading probe signal and the turbulence intensity is related to the broadening of the cross-correlation function compared to the autocorrelation function (figure II.1).

The definition of the standard deviation of the velocity leads to:

\[u'^2 = \frac{V^2}{N} \sum_{i=1}^{N} \frac{1}{t^2} (t - T)^2 \]

(II.2)

where \(V \) is the mean velocity, \(N \) is the number of samples and \(t \) is the bubble travel time data. With an infinitely large number of data points \(N \), an extension of the mean value theorem for definite integrals may be used as the functions \(\frac{1}{t^2} \) and \((t - T)^2 \) are positive and continuous over the interval \([t = 1, N] \) (Spiegel, 1974). It implies that there exists at least one characteristic bubble travel time \(t' \) satisfying \(t_1 \leq t' \leq t_N \) such that:

\[\left(\frac{u'}{V} \right)^2 = \frac{1}{N} \sum_{i=1}^{N} (t - T)^2. \]

(II.3)

That is, the standard deviation of the velocity is proportional to the standard deviation of the bubble travel time:

\[\frac{u'}{V} = \frac{\sigma_t}{t'}. \]

(II.4)
Assuming that the successive detections of bubbles by the probe sensors is a true random process \(f' \), the cross-correlation function would be a Gaussian distribution:

\[
R(t) = R_{\text{max}} \exp \left[- \left(\frac{t-T}{\sigma_T} \right)^2 \right]
\]

(II.5)

where \(\sigma_T \) is the standard deviation of the cross-correlation function. Defining \(\Delta^c T \) as a time scale satisfying: \(R(T + \Delta^c T) = R_{\text{max}}/2 \), the standard deviation equals: \(\sigma_T = \Delta^c T / 1.175 \) for a true Gaussian distribution. The standard deviation of the bubble travel time \(\sigma_T \) is a function of both the standard deviations of the cross-correlation and autocorrelation functions:

\[
\sigma_T = \frac{\sqrt{\Delta T^2 - \Delta t^2}}{1.175}
\]

(II.6)

where \(\Delta t \) is the characteristic time for which the normalised autocorrelation function equals 0.5.

Assuming that \(t' \sim T \) and that the bubble/droplet travel distance is a constant \(\Delta x \), equation (II.4) implies that the turbulence intensity \(u' / \nu \) equals:

\[
T_U = \frac{u'}{\nu} \approx 0.851 \frac{\sqrt{\Delta T^2 - \Delta t^2}}{T}
\]

(II.7)

\(T_U \) is a dimensionless velocity scale, that is characteristic of the turbulent velocity fluctuations over the distance \(\Delta x \) separating the probe sensors. Although \(T_U \) is not strictly equal to the dimensionless turbulent velocity fluctuation \(T_U = u' / \nu \), the distributions of modified turbulence intensity \(T_U \) provide some qualitative information on the turbulent velocity field in gas-liquid flows.

Kipphan (1977) developed a slightly different reasoning for two-phase mixtures such as pneumatic conveying. He obtained a result of similar form:

\[
\frac{u'}{U_w} = \sqrt{\frac{\sigma_T^2 - \sigma_u^2}{T^2}}
\]

(II.8)

where \(U_w \) is the mean flow velocity, \(T \) is the mean particle travel time (e.g. on the conveyor, in the pipe) and \(\sigma_u \) is the standard deviation of the autocorrelation function. It is believed however that Kipphan’s result (equation (II.8)) is not strictly exact (\(^1\)).

\(^1\)For example, affected only by random advective dispersion of the bubbles and random velocity fluctuations over the distance separating the probe sensors.

\(^2\)The assumptions of \(t' \sim T \) and equation (II.7) are not strictly correct.
bubble rise velocity (m/s);
u_r root mean square of longitudinal component of turbulent velocity (m/s);
V velocity (m/s), or air-water velocity in air-water flows;
V_{air} air velocity (m/s);
V_c critical flow velocity (m/s);
v_0 onset velocity (m/s) of air entrainment at plunging jet;
V_i induction trumpet velocity (m/s);
W channel width (m);
x longitudinal distance (m);
r_{10} transverse distance (m) between nozzle and jet impact;
$Y_{C_{90}}$ characteristic depth (m) where the void fraction is 90%;
y distance (m) normal to the bed;
α invert slope with the horizontal;
δ boundary layer thickness (m);
β_{sl} thickness (m) of the air sheet set into motion by a high-velocity plunging jet;
μ dynamic viscosity (Pa.s) of water;
ρ water density (kg/m3);
σ surface tension between air and water (N/m).

References

Internet resources

General resources

Gallery of photographs www.uq.edu.au/~e2chans/photos.html
Reprints of research www.uq.edu.au/~e2chans/reprints.html
papers
NASA Earth observatory earthobservatory.nasa.gov/
The formal water garden www.uq.edu.au/~e2chans/wat_gard.html

Air entrainment in plunging jet
Air entrainment in the developing_foV region www.uq.edu.au/~e2chans/data/jfe97.html
of plunging jets - Databank
THE DYNAMICS OF STRONG TURBULENCE AT FREE SURFACES. PART 2. FREE-SURFACE BOUNDARY CONDITIONS

M. BROCCINI
D.I.Am., Università di Genova, 16145 Genova, Italy

D.H. PEREGRINE
School of Mathematics, University of Bristol, Bristol, BS8 1TW, U.K.

Strong turbulence at a water–air free surface can lead to splashing and a disconnected surface as in a breaking wave. Averaging to obtain boundary conditions for such flows first requires equations of motion for the two-phase region. These are derived using an integral method, then averaged conservation equations for mass and momentum are obtained along with an equation for the turbulent kinetic energy in which extra work terms appear. These extra terms include both the mean pressure and the mean rate of strain and have similarities to those for a compressible fluid. Boundary conditions appropriate for use with averaged equations in the body of the of the water are obtained by integrating across the two-phase surface layer.

A number of ‘new’ terms arise for which closure expressions must be found for practical use. Our knowledge of the properties of strong turbulence at a free surface is insufficient to make such closures. However, preliminary discussions are given for two simplified cases in order to stimulate further experimental and theoretical studies.

Much of the turbulence in a spilling breaker originates from the foot of the breaker where turbulent water meets undisturbed water. A discussion of averaging at the foot of a breaker gives parameters that may serve to measure the ‘strength’ of a breaker.

1 Introduction

In Part 1 (Broccini and Peregrine 2001) the effects of strong turbulence at a free surface are described, and a semi-quantitative classification introduced. Part 2 is also motivated by a wish to improve modelling of breaking water waves, but the analysis is applicable to the wider range of flows described in Part 1. We approach the problem from the standard Reynolds averaging of the equations of motion of a turbulent fluid. The two-phase nature of the
PREFACE TO THE REVIEW SERIES

The rapid flow of new literature has confronted scientists and engineers of all branches with a very acute dilemma: How to keep up with new knowledge without becoming too narrowly specialized. Collections of review articles covering broad sectors of science and engineering are still the best way of sifting new knowledge critically. Comprehensive review articles written by discerning scientists and engineers not only separate lasting knowledge from the ephemeral, but also serve as guides to the literature and as stimuli to thought and to future research.

The aim of this review series is to present critical commentaries of the state-of-the-art knowledge in the field of coastal and ocean engineering. Each article will review and illuminate the development of scientific understanding of a specific engineering topic. Our plans for this series include articles on sediment transport, ocean waves, coastal and offshore structures, air-sea interactions, engineering materials, and seafloor dynamics. Critical reviews on engineering designs and practices in different countries will also be included.

P. L.-F. Liu