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Diffusion: basic theory

Summary
In this chapter the basic equation of molecular diffusion and simple
applications are developed.

5.1 Basic equations

The basic diffusion of matter, also called molecular diffusion, is described by Fick’s law, first
stated by Fick (1855). Fick’s law states that the transfer rate of mass across an interface nor-
mal to the x-direction and in a quiescent fluid varies directly as the coefficient of molecular
diffusion Dm and the negative gradient of solute concentration. For a one-dimensional
process:

(5.1)

where
.
m is the solute mass flux and Cm is the mass concentration of matter in liquid. The

coefficient of proportionality Dm is called the molecular diffusion coefficient. Equation (5.1)
implies a mass flux from a region of high mass concentration to one of smaller concentration.
An example is the transfer of atmospheric gases at the free surface of a water body.
Dissolution of oxygen from the atmosphere to the water yields some re-oxygenation.

The continuity equation (i.e. conservation of mass) for the contaminant states that spatial
rate of change of mass flow rate per unit area equals minus the time rate of change of mass:

(5.2)

Replacing into equation (5.1), it yields:

(5.3a)
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For diffusion in a three-dimensional system, the combination of equations (5.1) and (5.2)
gives:

(5.3b)

Equations (5.3a) and (5.3b) are called the diffusion equations. It may be solved analytically
for a number of basic boundary conditions. Mathematical solutions of the diffusion equation
(and heat equation) were addressed in two classical references (Crank 1956, Carslaw and
Jaeger 1959). Since equations (5.3a) and (5.3b) are linear, the theory of superposition may be
used to build up solutions with more complex problems and boundary conditions: e.g.
spreading of mass caused by two successive slugs.
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Discussion: theory of superposition
If the functions �1 and �2 are solutions of the diffusion equation subject to the respect-
ive boundary conditions B1(�1) and B2(�2), any linear combination of these solutions,
(a�1 � b�2), satisfies the diffusion equation and the boundary conditions aB1(�1) �
bB2(�2). This is the principle of superposition for homogeneous differential equations.

Figure 5.1(a) and (b) illustrates a simple example. Figure 5.1(a) shows the solution of
diffusion equation for the sudden injection of mass slug at the origin. By adding an uni-
form velocity (current), the solution is simply the superposition of Fig. 5.1(a) plus the
advection of the centre of mass (Fig. 5.1(b)).
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Fig. 5.1 (a) Application of the theory of superposition. (a) Diffusion downstream a sudden mass slug 
injection. Gaussian distribution solutions of equation (5.4) for M � 1 and Dm � 0.2.
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5.2 Applications

5.2.1 Initial mass slug

Initial mass slug introduced at t � 0 and x � 0
A simple example is the one-dimensional spreading of a mass M of contaminant introduced
suddenly at t � 0 at the origin (x � 0) in an infinite (one-dimensional) medium with zero
contaminant concentration. The fluid is at rest everywhere (i.e. V � 0). The fundamental
solution of the diffusion equation (5.3a) is:
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Notes
1. Adolf Eugen Fick was a 19th Century German physiologist who applied Fourier’s

(1822) law of heat flow to molecular diffusion process.
2. Typical values of molecular diffusion coefficients for solutes in water are in the range

5 �10�10 to 2 �10�9m2/s. Dm is a property of the fluid. For a given solvent (i.e.
fluid), solute (i.e. tracer), concentration and temperature, Dm is a constant.

3. Turbulent enhances mixing drastically. Turbulent diffusion may be described also by
equations (5.1)–(5.3) in which the molecular diffusion Dm is replaced by a turbulent
diffusion coefficient that is a function of the flow conditions (Chapter 7).

4. The theory of superposition may be applied to the diffusion equations (5.3a) and
(5.3b) because it is linear.
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Fig. 5.1 (b) Advection downstream a sudden mass slug injection for M � 1, Dm � 0.2, V � 1 – equation (6.5).
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Equation (5.4) is called a Gaussian distribution or random distribution. The mean equals zero
and the standard deviation � equals √


2Dmt. In the particular case of M � 1, it is known as the

normal distribution. Equation (5.4) is plotted in Fig. 5.1(a). The curve has a bell shape.
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DISCUSSION
The Gaussian distribution is given by:

where m is the mean and � is the standard deviation.
For a Gaussian distribution of tracers, the standard deviation � may be used as a charac-

teristic length scale of spreading. Ninety-five per cent of the total mass is spread between
(m � 2�) and (m � 2�), where m is the mean. Hence an adequate estimate of the width of
a dispersing cloud is about 4� (Fischer et al. 1979, p. 41).

For an initial mass slug, the length of contaminant cloud at a time t is 4� � 4√

2Dmt.
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Initial mass slug introduced at t � 0 and x � xo
Considering an initial mass slug introduced at t � 0 and x � xo, the analytical solution of the
diffusion equations (5.3a) and (5.3b) is:

for t � 0 (5.5)

Two initial mass slug introduced at t � 0
Considering two separate slugs (mass M1 and M2) introduced at t � 0, x � x1 and x � x2
respectively (Fig. 5.2), the solution of the diffusion equation is:
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Fig. 5.2 Application of the theory of superposition: diffusion downstream a sudden injection of two mass slugs.
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The solution is based upon the assumption that the mass slugs diffuse independently because
of the fundamental premise that the motion of individual particles is independent of the 
concentration of other particles (Fischer et al. 1979, p. 42).

5.2.2 Initial step function Cm(x, 0)

Considering a sudden increase (i.e. step) in mass concentration at t � 0, the boundary 
conditions are:

The solution of the diffusion equation may be resolved as a particular case of superposition
integral. It yields:

(5.7)

where the error function erf is defined as:

Equation (5.7) is shown in Fig. 5.3. Details of the error function erf are given in Appendix A
(Section 5.3).
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Fig. 5.3 Contaminant diffusion for an initial step distribution, solutions of equation (5.7) for Co � 1 and Dm � 0.1.
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5.2.3 Sudden increase in mass concentration at the origin

The concentration is initially zero everywhere. At the initial time t � 0, the concentration is
suddenly raised to Co at the origin x � 0 and held constant: Cm (0, t � 0) � Co. The analyt-
ical solution of the diffusion equations (5.3a) and (5.3b) is:

(5.8)

Equation (5.8) is that of an advancing front (Fig. 5.4). At the limit t � �	, Cm � Co everywhere.
The result may be extended, using the theory of superposition, when the mass concentra-

tion at the origin Co varies with time. The solution of the diffusion equation is:
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Note
At the origin, the mass concentration becomes a constant for t � 0: Cm(x � 0,
t � 0) � Co/2.
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Fig. 5.4 Spread of a sudden concentration increase at the origin, solutions of equation (5.8) for Co � 1 and
Dm � 0.15.

DISCUSSION
The step function (Section 5.2.2) is a limiting of the sudden increase in mass concentra-
tion at the origin with constant mass concentration at the origin. In Section 5.2.2, the
mass concentration at the origin was Cm (x � 0, t � 0) � Co/2.
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5.2.4 Effects of solid boundaries

When the spreading (e.g. of a mass slug) is restricted by a solid boundary, the principle of
superposition and the method of images may be used. The spreading pattern resulting from a
combination of two mass slugs of equal strength includes a line of zero concentration gradi-
ent midway between them (Fig. 5.5). Since the mass flux is zero according to Fick’s law
(equation (5.1)), it can be considered as a boundary wall1 without affecting the other half of
the diffusion pattern.

A simple example is the spreading of a mass slug introduced at x � 0 and t � 0, with a
wall at x � �L (Fig. 5.5). At the wall there is no transport through the boundary. That is, the
concentration gradient must be zero at the wall:

In order to ensure no mass transport at the wall, a mirror image of mass slug, with mass M
injected at x � �2L, is superposed to the real mass slug of mass M injected at x � 0. The flow
due to the mirror image of the mass slug is superposed onto that due to the mass slug itself.
It yields:

(5.10)

Equation (5.10) is the solution of the superposition of two mass slugs of equal mass injected
at x � �2L and x � 0. It is also the solution of a mass slug injected at x � 0 with a solid
boundary at x � �L.
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Fig. 5.5 Spread of a sudden concentration increase at the origin with one boundary.

1There is no mass flux through a wall and any solid boundary.
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Problems involving straight or circular boundaries can be solved by the method of images.
Considering a mass slug injected at the origin in between two solid walls located at x � �L
and x � �L, the solution of the problem is:

(5.11)

The solution is obtained by adding an infinity of mass slug source on both positive and 
negative axis (Fischer et al. 1979, pp. 47–48).
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Note
The method of images is a tool by which straight solid boundaries are treated as sym-
metry lines. The problem is solved analytically by combining the method of images with
the theory of superposition.

In Fig. 5.5, the real slug is located at x � 0. The solid boundary is located at x � �L.
Hence the image slug (or mirror slug) must be located at x � �2L to verify zero mass
flux at x � �L. (Remember: there is no transport through the boundary.)

5.3 Appendix A – Mathematical aids

Differential operators
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Divergence:

Curl:

Laplacian operator:
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Error function
The Gaussian error function, or function erf, is defined as:

Tabulated values are given in Table 5A.1. Basic properties of the function are:

where n! � 1 � 2 � 3 � … � n.
The complementary Gaussian error function erfc is defined as:
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Note
In first approximation, the function erf(u) may be correlated by:

with a normalized correlation coefficient of 0.99952 and 0.9992 respectively. In many
applications, the above correlations are not accurate enough, and Table 5A.1 should 
be used.

erf( )  tanh(1.198787 )     u u u� �	 � � �	

erf( )  (1.375511  0.61044   0.088439 0    22u u u u u� � � � �)

Table 5A.1 Values of the error function erf

u erf(u) u erf(u)

0 0 1 0.8427
0.1 0.1129 1.2 0.9103
0.2 0.2227 1.4 0.9523
0.3 0.3286 1.6 0.9763
0.4 0.4284 1.8 0.9891
0.5 0.5205 2 0.9953
0.6 0.6309 2.5 0.9996
0.7 0.6778 3 0.99998
0.8 0.7421 �	 1
0.9 0.7969
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Notation
x, y, z Cartesian coordinates
r, �, z polar coordinates
∂/∂x partial differentiation with respect to the x-coordinate
∂/∂y, ∂/∂z partial differential (Cartesian coordinate)
∂/∂r, ∂/∂� partial differential (polar coordinate)
∂/∂t partial differential with respect to time t
D/Dt absolute derivative
N! N-factorial: N! � 1 � 2 � 3 � 4 � … � (N � 1) � N

Constants
e constant such as Ln(e) � 1: e � 2.718 281 828 459 045 235 360 287
� � � 3.141 592 653 589 793 238 462 643
√

—
2 √

—
2 � 1.414 213 562 373 095 0488

√
—
3 √

—
3 � 1.732 050 807 568 877 293 5
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5.4 Exercises

1. A 3.1 kg mass of dye is injected in the centre of large pipe. In the absence of flow and
assuming molecular diffusion only, calculate the time at which the mass concentration
equals 0.1 g/L at the injection point. Assume Dm � 0.89 � 10	2m2/s.

2. Considering a one-dimensional semi-infinite reservoir bounded at one end by a solid bound-
ary (e.g. a narrow dam reservoir), a 5 kg mass slug of contaminant (Dm � 1.1 � 10�2m2/s)
is injected 12 m from the straight boundary (e.g. concrete dam wall). Calculate the tracer
concentration at the boundary 5 min after injection. Estimate the maximum tracer con-
centration at the boundary and the time (after injection) at which it occurs.

3. A 10 km long pipeline is full of fresh water. At one end of the pipeline, a contaminant is
injected in such a fashion that the contaminant concentration is kept constant and equals
0.14 g/L. Assuming Dm � 1.4 � 10�3m2/s and an infinitely long pipe, calculate the 
time at which the pollutant concentration exceeds 0.007 and 0.01 g/L at 4.2 km from the
injection point.

5.5 Exercise solutions

1. t � 8500 s (2 h 21 min).
2. (a) Cm � 2.8 � 10�5kg/m3 and (b) Cm � 0.2 kg/m3 and t � 6480 s (1.8 h).
3. (a) t � 18 900 days (0.007 g/L) and (b) t � 22 000 days (0.01 g/L).
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