$$
\frac{\mathrm{l}_{\mathrm{m}}}{\delta}=0.085 \times \tanh \left(\frac{K}{0.085} \times \frac{\mathrm{y}}{\delta}\right)
$$

where tanh is the hyperbolic tangent function, K is the von Karman constant and δ is the boundary layer thickness (SCHLICHTING and GERSTEN 2000, p. 557). The momentum exchange coefficient, or "eddy viscosity", v_{T} derives then from :

$$
v_{\mathrm{T}}=\mathrm{l}_{\mathrm{m}}^{2} \times \frac{\partial \mathrm{v}_{\mathrm{x}}}{\partial \mathrm{y}}
$$

Power law velocity distribution in smooth boundary layers

For a smooth turbulent flow, the velocity distribution in the entire boundary layer may be approximated by a power law :

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{~V}_{\mathrm{O}}}=\left(\frac{\mathrm{y}}{\delta}\right)^{1} \tag{y}
\end{equation*}
$$

Equation (4-21) is valid close to and away from the boundary without distinction between the inner and outer regions. It is also valid for turbulent boundary layer flows along rough walls. BARENBLATT $(1994,1996)$ showed that the velocity power law (Eq. (4-21)) can be derived theoretically from some basic self-similarity. A self-similar process is one whose spatial distribution of properties at various times can be obtained from one another by a similarity transformation. Self-similarity is a powerful tool in turbulence flow research. Although more simple than the law of the wall, the power law velocity distribution gives results very close to the log-law (GEORGE 2006).
For a power-law velocity distribution :

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{~V}_{\mathrm{O}}}=\left(\frac{\mathrm{y}}{\delta}\right)^{1 / \mathrm{N}} \tag{4-21}
\end{equation*}
$$

the characteristic parameters of the boundary layers can be expressed analytically. The displacement thickness and the momentum thickness become :

$$
\begin{aligned}
& \frac{\delta_{1}}{\delta}=\frac{1}{1+\mathrm{N}} \\
& \frac{\delta_{2}}{\delta}=\frac{\mathrm{N}}{(1+\mathrm{N}) \times(2+\mathrm{N})}
\end{aligned}
$$

where N is the inverse of the velocity exponent. The shape factor equals :

$$
\frac{\delta_{1}}{\delta_{2}}=\frac{N+2}{N}
$$

For two-dimensional turbulent boundary layers, SCHLICHTING (1979) indicated that separation occurs for $\delta_{1} / \delta_{2}>1.8$ to 2.4. Such a condition implies separation for $\mathrm{N}<1.4$ to 2.5.

Discussion

NIKURADSE (1932) performed detailed velocity measurements in fully-developed circular pipe flows. A reanalysis of his data set showed that the data were self-similar and followed closely a power law :

$$
\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{~V}_{*}} \propto\left(\frac{\rho \times \mathrm{V} * \times \mathrm{y}}{\mu}\right)^{\frac{3}{2 \times \operatorname{Ln}(\mathrm{Re})}}
$$

