5. TURBULENT SHEAR FLOWS

Jets, wakes and shear flows are most often turbulent. Three examples of turbulent shear flows are developed below: the free shear layer, the plane jet and the circular jet.

5.1 Free-shear layer

A simple turbulent shear flow is the free shear layer sketched in Figure 4-14. Assuming no pressure gradient, the differential form of the momentum equation can be simplified into :

$$
\begin{equation*}
\mathrm{v}_{\mathrm{X}} \times \frac{\partial \mathrm{v}_{\mathrm{X}}}{\partial \mathrm{x}}+\mathrm{v}_{\mathrm{y}} \times \frac{\partial \mathrm{v}_{\mathrm{x}}}{\partial \mathrm{y}}=\mathrm{v}_{\mathrm{T}} \times \frac{\partial^{2} \mathrm{v}_{\mathrm{x}}}{\partial \mathrm{y}^{2}} \tag{4-27}
\end{equation*}
$$

where v_{T} is the turbulent momentum exchange coefficient. For a plane shear layer GOERTLER (1942) solved the equation of motion assuming a constant eddy viscosity v_{T} across the shear layer at a given longitudinal distance x from the singularity :

$$
\begin{equation*}
\mathrm{v}_{\mathrm{T}}=\frac{1}{4 \times \mathrm{K}^{2}} \times \mathrm{x} \times \mathrm{V}_{\mathrm{O}} \tag{4-28}
\end{equation*}
$$

where K is a constant. The constant K provides some information on the expansion rate of the momentum shear layer as the rate of expansion is proportional to $1 / \mathrm{K}$. K equals between 9 and 13.5 with a generallyaccepted value of 11 for monophase free shear layers (RAJARATNAM 1976, SCHLICHTING 1979, SCHETZ 1993).
Let us introduce the dimensionless terms η and Λ :

$$
\begin{align*}
& \eta=K \times \frac{y-y_{50}}{x} \tag{4-29}\\
& \Lambda=\frac{\psi}{x \times \frac{V_{0}}{2}} \tag{4-30}
\end{align*}
$$

where y_{50} is the location where $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{O}} / 2$ and ψ is the stream function. Λ is simply a dimensionless stream function. Ideally y_{50} is zero, but experimental observations demonstrated that y_{50} is usually negative and increases with increasing longitudinal distance x as sketched in Figure 4-14.
Basic similarity considerations show that Λ is a function of η only, and Equation (4-27) may be rewritten as a differential function for $\Lambda(\eta)$:

$$
\begin{equation*}
\Lambda^{\prime \prime \prime}+2 \times \mathrm{K} \times \Lambda \times \Lambda^{\prime \prime}=0 \tag{4-31}
\end{equation*}
$$

where $\Lambda^{\prime}=\partial \Lambda / \partial \eta$.
GOERTLER (1942) obtained the solution in the first approximation :

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{~V}_{\mathrm{O}}}=\frac{1}{2} \times\left(1+\operatorname{erf}\left(\mathrm{K} \times \frac{\left(\mathrm{y}-\mathrm{y}_{50}\right)}{\mathrm{x}}\right)\right) \tag{4-32}
\end{equation*}
$$

where erf is the Gaussian error function defined as :

$$
\begin{equation*}
\operatorname{erf}(\mathrm{u})=\frac{2}{\sqrt{\pi}} \times \int_{0}^{\mathrm{u}} \exp \left(-\mathrm{t}^{2}\right) \times \mathrm{dt} \tag{4-33}
\end{equation*}
$$

Tabulated values of the Gaussian error function erf are listed in Table 4-1.

