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∂ δ2
∂x   +  

1
Vo

 × 
∂ Vo
∂x  × (2 × δ2  +  δ1)  =  

τo

ρ × Vo
2 

where δ1 and δ2 are respectively the displacement thickness (Eq. (3-2)) and the momentum thickness (Eq. (3-3)). 
6- The present development is based upon the elegant presentation of LIGGETT (1994, pp. 200-201). 

 
The von Karman momentum integral equation may be used to solve a boundary layer problem by assuming a 
particular velocity distribution. This approach is valid for both laminar and turbulent boundary layers. It was 
first used by POHLHAUSEN (1921). In modern times, the momentum integral equation is rarely used for 
laminar flows, but it is commonly applied to turbulent boundary layer flows. 
 

3.2 Application to a flat plate 
Using the solution of the Blasius equation, the momentum integral equation may be applied to a laminar 
boundary layer. Let us assume that the velocity profile above a flat plate may be expressed as : 

 
Vx
Vo

  = a0  +  a1 × 
y
δ  +  a2 × ⎝

⎛
⎠
⎞y
δ

2
 (3-28) 

where a0, a1 and a2 are undetermined coefficients, The coefficients are determined from the boundary 
conditions : Vx(y=0) = 0, Vx(y=+∞) = Vo and (∂Vx/∂y) = 0 for y = +∞. The velocity distribution is found to 
be: 

 
Vx
Vo

  =  2 × 
y
δ  -  ⎝

⎛
⎠
⎞y
δ

2
 (3-29) 

The von Karman momentum equation for a flat plate becomes : 

 Vo
2 × 

∂
∂x(δ2)  =  

τo
ρ  (3-30) 

After the appropriate substitutions, the laminar boundary layer characteristics may be derived : 

 δ  =  5.48 × 
x
Rex

 (3-31) 

 δ1  =  1.83 × 
x
Rex

 (3-32) 

 δ2  =  0.73 × 
x
Rex

 (3-33) 

The overall shear force on a plate of length L is : 

 

⌡⌠
x=0 

 L
τo × dx

1
2 × ρ × Vo

2 × L
  =  

1.46
ReL

 (3-34) 

The results are summarised in Table 3-2 and they are compared with the solution of the Blasius equation. 
The above approach may be extended to a velocity profile which satisfies a polynomial of third degree (see 
Exercises). The results for a polynomial of fourth degree are listed in Table 3-2 in which they are compared 
with the parabolic velocity distribution results and the exact solution of the Blasius equation. The 
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comparison shows that the momentum integral results with a polynomial of fourth degree are close to the 
exact solution and even the results with a quadratic polynomial are within 10% of the theoretical solution 
which is reasonable. 
 

Note 

A polynomial of second degree is called a quadratic polynomial, or parabolic function. 

 
Table 3-2 - Effects of the velocity distribution assumptions on the laminar boundary layer characteristics 
above a flat plate : comparison between the von Karman momentum integral equation and the Blasius 
equation 
 

Boundary layer 
parameter 

Approximate solutions Theoretical solution 

Velocity 
distribution: 

Vx
Vo

  =  2 × 
y
δ  -  ⎝

⎛
⎠
⎞y
δ

2
 

Vx
Vo

 = 
y
δ × ⎝

⎜
⎛

⎠
⎟
⎞

2 - 2×⎝
⎛
⎠
⎞y
δ

2
 + ⎝
⎛
⎠
⎞y
δ

3
 

Blasius equation 

δ  =  5.48 × 
x
Rex

 5.84 × 
x
Rex

 4.91 × 
x
Rex

 

δ1  =  1.83 × 
x
Rex

 1.75 × 
x
Rex

 1.72 × 
x
Rex

 

δ2  =  0.73 × 
x
Rex

 0.685 × 
x
Rex

 0.664 × 
x
Rex

 

τo
1
2 × ρ × Vo

2
  = 

0.730
Rex

 
0.685

Rex
 

0.664
Rex

 

⌡⌠
x=0 

 L
τo × dx

1
2 × ρ × Vo

2 × L
  = 

1.46
ReL

 
1.370

ReL
 

1.328
ReL

 

 

3.3 Discussion 
This technique may be applied to other boundary layer flows including those with some longitudinal 
pressure gradient ∂P/∂x ≠ 0. POHLHAUSEN (1921) solved the momentum integral equation for a velocity 
distribution which satisfies a polynomial of fourth degree : 

 
Vx
Vo

  = a0  +  a1 × 
y
δ  +  a2 × ⎝

⎛
⎠
⎞y
δ

2
  +  a3 × ⎝

⎛
⎠
⎞y
δ

3
  +  a4 × ⎝

⎛
⎠
⎞y
δ

4
 (3-35) 

where a0 to a4 are undetermined constants. 
At the boundary (y = 0), the boundary conditions are Vx(y=0) = 0 and 

 
⎝
⎜
⎛

⎠
⎟
⎞∂2 Vx

∂y2 y=0
  =  - 

ρ
μ ×Vo × 

∂ Vo
∂x  (3-36) 

The above condition comes from the boundary layer equation (see below). Outside of the boundary layer (y 
≥ δ), the velocity profile satisfies further : Vx(y=δ) = Vo, and (∂Vx/∂y) = (∂2Vx/∂y2) = 0 for y = δ. 
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Note 

Equation (3-36) is a simple rewriting of the boundary layer equation (Eq. (3-6)). At the boundary (y =0), Equation 
(3-6) becomes : 

 
⎝
⎜
⎛

⎠
⎟
⎞

- 
1
ρ × 

∂ P
∂x   -  g × 

∂ zo
∂x   +  

μ
ρ × 

∂2 Vx
∂y2

y=0
  = 0 

Using the differential form of the Bernoulli equation along the streamline in the ideal fluid flow region : 

 Vo × 
∂ Vo
∂x   + g × 

∂ zo
∂x   +  

1
ρ × 

∂ P
∂x   =  0 

and replacing into Equation (3-6), it yields : 

 Vo × 
∂ Vo
∂x   +  

⎝
⎜
⎛

⎠
⎟
⎞μ

ρ × 
∂2 Vx
∂y2

y=0
  = 0 

 
Introducing the dimensionless parameter : 

 λ  = 
ρ
μ × δ2 × 

∂ Vo
∂x  (3-37) 

the parameter λ may be interpreted as a ratio of a longitudinal pressure gradient to some viscous force 
(LIGGETT 1994). Physically a positive value of λ indicates a favourable pressure gradient (∂P/∂x < 0) and a 
a negative value denotes an adverse pressure gradient (∂P/∂x > 0). For a flat plate in absence of pressure 
gradient, λ = 0. 
The parameters of Equation (3-35) are found to be : 
 a0  =  0 (3-38a) 

 a1  =  2  +  
λ
6 (3-38b) 

 a2  =  - 
λ
2 (3-38c) 

 a3  =  - ⎝
⎛

⎠
⎞2  -  
λ
2  (3-38d) 

 a4  =  1  -  
λ
6 (3-38e) 

If λ is a constant, the velocity profiles are self-similar. In a general case, the parameter λ varies with x and 
the parameters a0 to a4 vary with distance. That is, the shape of the velocity profile changes along the 
boundary layer. 
The boundary layer characteristics may be expressed in terms of the dimensionless parameter λ : 

 
δ1
δ   =  

3
10  -  

λ
120 (3-39) 

 
δ2
δ   =  

37
315  -  

λ
945  +  

λ2
9072 (3-40) 

The dimensionless boundary shear stress equals : 
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