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ABSTRACT 

A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising in a 
river mouth during the early flood tide. The formation of the bore occurs is linked with a 
macro-tidal range exceeding 4.5 to 6 m, a funnel shape of the river mouth and estuarine 
zone to amplify the tidal range. After formation of the bore, there is an abrupt rise in 
water depth at the bore front associated with a flow singularity in terms of water elevation, 
and pressure and velocity fields. The application of continuity and momentum principles 
gives a complete solution ofthe ratio ofthe conjugate cross-section areas as a function of the 
upstream Froude number. The effects of the flow resistance are observed to decrease the ratio 
of conjugate depths for a given Froude number. The field observations show that the tidal 
bore passage is associated with large fluctuations in water depth and instantaneous velocity 
components associated with intense turbulent mixing. The interactions between tidal bores 
and human society are complex. A tidal bore impacts on a range of socio-economic resources, 
encompassing the sedimentation of the upper estuary, the impact on the reproduction and 
development of native fish species, and the sustainability of unique eco-systems. It can be 
a major tourism attraction like in North America, Far East Asia and Europe, and a number 
of bores are surfed with tidal bore surfing competitions and festivals. But a tidal bore is a 
massive hydrodynamic shock which might become dangerous and hinder the local traffic 
and economical development. 

10.1 INTRODUCTION 

A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising. It is an 
unsteady flow motion generated by the rapid rise in free-surface elevation at the river mouth 
during the early flood tide. The formation of a bore occurs when the tidal range exceeds 4.5 
to 6 m and the funnel shape of both river mouth and lower estuarine zone amplifies the tidal 
wave. The driving process is the large tidal amplitude and its amplification in the estuary. 
After formation of the bore, there is an abrupt rise in water depth at the bore front associated 
with a flow singularity in terms of water elevation, and pressure and velocity fields. The 
tidal bore is a positive surge also called hydraulic jump in translation. Figures l 0.1 to l 0.5 
illustrate some tidal bores in China, France and Indonesia. Pertinent accounts include Moore 
(1888), Darwin (1897), Moule (1923), and Chanson (2011 ). The existence of the tidal bore is 
based upon a fragile hydrodynamic balance between the tidal amplitude, the freshwater river 



296 Fluid Mechanics a/Environmental lnte1faces, Second Edition 

flow conditions and the river channel bathymelry, and thi balance may be a ily di turbed 
by changes in boundary conditions and freshwater infl w (Cbanson 2011 ). A number of 
man-made interferences led to the disappearance of tidal bores in France anada Mexic 
for example. While the fluvial navigation gained in ·afety the ecology of the estuari ne 
systems was affected adversely, e.g. with the di appearance of native f i h p cie . atural 
events do also affect tidal bores: e.g., the 1964 Alaska earthquake on the Turnagain and 
Knik Arms bores, the 2001 flood of Ord River (Australia), the combination of storm surge 
and spring tide in Bangladesh in November 1970. 

A related process is the tsunami-induced bore. When a tsunami wave propagates in a 
river, its leading edge is led by a positive surge. The tsunami-induced bore may propagate 
far upstream. Some tsunami-induced river bores were observed in Hawaii in 1946, in Japan 

(A) Breaking tidal bore downstream of St Pardon on 8 September 20 I 0 (shutter speed: 1/320 s)- Looking 

downstream of the incoming bore. 

(B) Tidal bore in front of St Pardon on 12 September 2010 at sunrise (shutter speed: 1/100 s)- Bore propagation 

from left to right. 

Figure 10.1. Tidal bore of the Dordogne River (France) . 
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(C) Undular tidal bore in front of St Sulpice de Faleyrens on 19 June 20 l l evening (shutter speed: I /500 s) 

(Courtesy of Mr and Mrs Chanson)- Bore propagation from right to left. 

Figure 10.1. Continued. 

in 1983, 2001 , 2003 and 2011 , and even in the RiverYea1m in United Kingdom on 27 June 
2011. During the 11 March 2011 tsunami catash·ophe in Japan, tsunami-induced bores were 
observed in several rivers in north-eastern Honshu and as far s North-America. 

After a brief introduction on tidal bores, some basic theoretical developments are devel­
oped. Then some recent field observations are presented and discussed. The results are 
challenging since the propagation of tidal bores is associated with sediment scour, strong 
mixing and suspended sediment advection upstream. It will be shown that the hydrodynam­
ics of tidal bores remains a challenge to engineers and scientists because of the unsteady 
nature and sharp discontinuity of the flow. 

10.2 THEORETICAL CONSIDERATIONS 

10.2.1 Presentation 

A tidal bore is characterised by a sudden rise in free-surface elevation and a discontinuity 
of the pressure and velocity fields. In the system of reference following the bore front, 
the integral form of the continuity and momentum equations gives a series of relationships 
between the flow properties in front of and behind the bore (Rayleigh, 1914; Henderson, 
1966; Liggett, 1994): 

(10.1) 
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(A) Tidal bore at Podensac on 11 September 2010 morning (shutter speed: 11320 s)-Looking downstream at 

the incoming tidal bore. 

(B) Undular tidal bore upstream ofPodensac on 16 August 2011 evening (shutter speed: 1/2,000 s) (Courtesy of 
Isabelle Borde)- Bore propagation from left to right. 

Figure 10.2. Tidal bore of the Garonne River (France). 

p X (VI + U) X AI X (f31 X (VI + U)- f32 X (V2 + U)) 

= J J p X dA - J J p X dA + Fjric - w X sine 

A2 A1 

(10.2) 

where V is the flow velocity and U is the bore celerity for an observer standing on the 
bank (Fig. 10.6), p is the water density, g is the gravity acceleration, A is the channel 
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Figure 10.3. Tidal bore of the Kampar River (Indonesia) in September 2010 (Courtesy of Antony Colas)- Bore 
propagation from right to left. 

Figure 10.4. Tidal bore of the Qiantang River( China) at Yanguan on 23 July 2009 (shutter speed: 1/500 s) 
(Courtesy of Jean-Pierre Girardot)- The tidal range was 4 m- Bore propagation from left to right. 



300 Fluid Mechanics of Environmental Interfaces, Second Edition 

(A) Breaking bore in front ofPointe du Grouin du Sud on 19 October 2008 morning (shutter speed: 1/640 s)­

Bore propagation from right to left. 

(B) Breaking tidal bore downstream ofPointe du Grouin du Sud on 24 September 2010 evening (shutter speed: 

1/125 s)- Bore propagation from right to left. 

Figure 10.5. Tidal bore of the Selune River (France). 
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cross-sectional area measured perpendicular to the main flow direction, f3 is a momentum 
correction coefficient or Boussinesq coefficient, Pis the pressure, Ffric is the flow resistance 
force, W is the weight force, () is the angle between the bed slope and horizontal, and the 
subscripts 1 and 2 refer respectively to the initial flow conditions and the flow conditions 
immediately after the tidal bore. Note that U is positive for a tidal bore (Fig. 1 0.6). 
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Figure 10.6. Definition sketch of a tidal bore propagating upstream. 

10.2.2 Momentum considerations 

The continuity and momentum equations provide some analytical solutions within some 
basic assumptions. First let us neglect the flow resistance and the effect of the velocity distri­
bution ({3 1 = {32 = 1) and let us assume a flat horizontal channel (sin()~ 0). The momentum 
principle becomes: 

p X (V,+ U) X A, X (V,- V2) = f f p X dA- f f p X dA (10.3) 

A2 At 

In the system of reference in translation with the bore, the rate of change of momentum flux 
equals the difference in pressure forces. The latter may be expressed assuming a hydrostatic 
pressure distribution in front of and behind the tidal bore. The net pressure force resultant 
consists of the increase of pressure p x g x (d2 - d1) applied to the initial flow cross-section 
area A 1 plus the pressure force on the area t.A =A2 - A1. This latter term equals: 

A2 f f P X g X (dz- y) X dA = ~ X p X g X (d2 .:__ d1)
2 

X B' 

At 

(10.4) 

where y is the distance normal to the bed, d1 and d2 are the flow depths in front of and 
behind the bore (Fig. 10.6), and B' is a characteristic free-surface width. It may be noted 
that B1 < B' < B2 where B1 and B2 are the upstream and downstream free-surface widths 

Another characteristic free-surface width B is defined as: 

(10.5) 
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The equation of conservation of mass may be expressed as: 

(10.6) 

The combination of the equations of conservation of mass and momentum (Eq. (10.3) 
and (1 0.6)) yields to the following expressions: 

- X --- X 2-- X AI+- X A2 1 gxA2 (( B' ) B' ) 
2 AI X B B B 

( 10.7) 

(10.8) 

After transformation, Equation (1 0. 7) may be rewritten in the form: 

(10.9) 

where Fr1 is the tidal bore Froude number defined as: 

(10.10) 

Equation (10.10) defines the Froude number for an irregular channel based upon 
momentum considerations. Interestingly the same expression may be derived from energy 
considerations (Henderson, 1966; Chanson, 2004). 

Altogether Equation (I 0.9) provides an analytical solution of the tidal bore Froude number 
as a function of the ratios of cross-sectional areas A21A1, and of characteristic widths B' IB 
and BI/B. The effects of the celerity are linked implicitly with the initial flow conditions, 
including for a fluid initially at rest (V1 = 0). Equation ( 1 0.9) may be rewritten to express the 
ratio of conjugate cross-section areas A21A 1 as a function of the upstream Froude number: 

(2- .8')2 

+ 8 x !Jf x Fr2 - (2 - B') 
A2 1 B ty. 1 B 
AI = 2 X ~------~B~'--------------- (10.11) 

B 

which is valid for any tidal bore in an irregular flat channel (Fig. 1 0.6). The effects of channel 
cross-sectional shape are taken into account through the ratios B' 1 B and .B 1 1 B. 

Limiting cases 

In some particular situations, the cross-sectional shape satisfies the approximation 
.82 ~ B ~ B' ~ B 1 : for example, a channel cross-sectional shape with parallel walls next 
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to the waterline or a rectangular channel. In that case, Equations (10.7) and (10.8) may be 
simplified into: 

(10.12) 

(10.13) 

The above solution is close to the development ofLighthill (1978). Equation (1 0.12) may 
be expressed as the ratio of conjugate cross-section areas as a function of the upstream 
Froude number Fr1: 

(10.14) 

This last equation yields to the Belanger equation for a rectangular horizontal channel in 
absence of friction: 

Rectangular channel (10.15) 

Application 

Several field observations of tidal bores were documented with detailed hydrodynamic and 
bathymetric conditions. The data are summarised in Table 1 0.1. Figure 1 0.5B shows the 
Selune River channel during the field study on 24 September 2010 and the photograph 
highlights the wide and flat cross-sectional shape. Despite the range of channel cross­
sectional shapes, the data indicated that the approximationB1 < B' < B < B2 held on average 
(Table 10.1 ). 

The upstream Froude number was calculated using Equation (1 0.1 0) based upon the field 
measurements of velocity and bore celerity, and the data are summarised in Figure 10.7. 
Figure 10.7 presents the upstream Froude number as a function of the ratio of conjugate 
cross-section areas. The data are compared with Equation (10.11) for irregular channel cross­
sections and with Equation ( 1 0.14) for channel cross-sectional shapes with parallel walls next 
to the waterline. The results highlight the effects of the irregular cross-section and illustrate 
that Equation ( 10.14) is not appropriate in an irregular channel like a natural estuarine system. 

Further the definition of the Froude number Fr1 (Eq. (10.10)) differs from the traditional 
approximation VJ!(g x d1) 0•5. For the data listed in Table 10.1 and shown in Figure 10.7, 
the difference varied between 12% and 74%! 

10.2.3 Discussion: effects of flow resistance 

In presence of some boundary friction and drag losses, the flow resistance force is non-zero 
and the equation of conservation of momentum may be solved analytically for a flat horizon­
tal channel. The combination of the equations of conservation of mass and momentum yields: 

/1 g x A2 (( B') B' ) A2 u + v, = \ - X -- X 2- - X A, + - X A2 + 
2 A1 x B B B A2- A1 

Fjric 
x ---

p xA 1 

(10.16) 
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Table 10.1. Hydrodynamics and bathymetric properties of tidal bores . 

River Bore Date Ref. dl u Fr1 d2 -dl A2/A 1 
(m) (m/s) (m) 

Dee Breaking 2/07/03 [SFW04] 1.50 4.70 1.04 0.28 1.13 
Daly Undular 6/09/03 [WWSC04] 0.72 4.10 1.79 0.45 1.80 
Garonne Undular 10/08/10 [CLSR10] 1.77 4.49 1.30 0.50 1.37 
Garonne Undular 11/09/10 [CLSRlO] 1.81 4.20 1.20 0.46 1.33 
Selune Breaking 24/09/10 [MCSlO] 0.38 2.00 2.35 0.34 6.19 
Selune Breaking 25/09110 [MCS10] 0.33 1.96 2.48 0.41 9.79 

River Bore Date B2/B1 B/B1 B'/B1 A2/A1 
Eq. (10.11) 

Dee Breaking 2/07/03 1.013 1.007 1.001 1.052 
Daly Undular 6/09/03 1.066 1.030 1.085 2.09 
Garonne Undular 10/08/10 1.083 1.042 1.018 1.44 
Garonne Undular 11/09/10 1.076 1.032 1.021 1.30 
Selune Breaking 24/09/10 3.37 2.33 1.92 4.92 
Selune Breaking 25/09110 3.53 2.33 1.98 5.18 

Notes: d1: initial water depth at sampling location; Italic data: incomplete data; [SFW04]: Simpson et al. (2004); 
[WWSC04]: Wolanski et al. (2004); [CLSRIO]: Chanson et al. (2010); [MCS10]: Mouaze et al. (2010). 
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• Field observations 
Eq. (11) • 
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Figure 10.7. Momentum application to tidal bores in irregular cross-section cha1111els - Comparison between 
field observations (Table 10.1) and Equations (I 0.11) and (10.14). 
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(10.17) 

Equations (10.16) and (1 0.17) are the extension of Equations (1 0.7) and (1 0.8) in presence 
of flow resistance. The results may be transformed into: 

(10.18) 

The result (Eq. (1 0 .18)) gives a relationship between the tidal bore Froude number, 
the ratio of the conjugate cross-section areas A2/A 1 and the flow resistance force in flat 
channels of irregular cross-sectional shape. Figure 10.8 illustrates the effects ofbed friction 
on the hydraulic jump properties for a irregular channel corresponding to the bathymetric 
conditions of the Selune River listed in Table 1 0.1. 
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Figure 1 0.8. Effect of flow resistance on the tidal bore properties in an irregular channel. 

The theoretical developments imply a smaller ratio of the conjugate depths d2/d1 with 
increasing flow resistance. The finding is consistent with laboratory data (for example 
Leutheusser and Schiller, 1975). It is more general and applicable to any irregular channel 
cross-sectional shape. Importantly the results highlighted that the effects of flow resistance 
decrease with increasing Froude number and become negligible for Froude numbers greater 
than 2 to 3 depending upon the cross-sectional properties (Fig. 1 0.8). 
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10.3 FIELD OBSERVATIONS 

10.3.1 Presentation 

When a tidal bore is formed, the flow properties immediately upstream and downstream of 
its front must satisfy the principles of continuity and momentum (section 10.2). Theoretical 
considerations demonstrate that a key dimensionless parameter is the tidal bore Froude 
number defined as: 

(10.10) 

Fr1 characterises the strength of the bore. If the Froude number Fr1 is less than unity, 
the tidal bore cannot form. For a Froude number between 1 and 1.5 to 1.8, the bore is 
followed by a train of qua i-periodic econdary wave called whelp · or undulation . This 
type of bore i the undu lar .non-breaking b re illu tfated in Figures I 0.1 , I 0.2 and I 0.9. 
The free-surface propertie of undular tidaJ bores were inve tigatcd for more than a entw·y 
(Sous ine q I 77· Lemoine, 1948; hanson, 20 I 0). A recent review howed that the 
rate of energy di sipation i mall to negligible while the approximation of hydro tatic 
pressure is inaccurate. The free- urface profile present a pattern somehow comparabl to 
the inu idal and cnoidal wave function aJthough neither captures the fine detail of the 
undulation ha pc and asymmetrical wave profile ( han on, 20 I 0). Field and laboratory data 
showed a maximum in wave amplitude and teepnes for Fr1 = 1.3 to 1.4 corre ponding to 
the apparition of ome breaking at the first wave rest 

For larger Froude number the bore tidal has a breaking front with a marked roller. 
Examples are shown in Figures 10.3 to 10.5. 

Figure 10.9. Undular tidal bore the Garonne River on 10 September 2010 at Arcins (shutter speed: 11125 s) ­
Bore propagation from right to left- The surfer in the background rides the bore front. 
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Table 10.2. Detailed field measurements ofturbulent velocity in tidal bores. 

River Country Bore Date Ref Instrument Sampling 
type rate (Hz) 

Dee UK Breaking 2/07/03 [SFW04] ADCP (1.2MHz) 1 
Daly Australia Undular 6/09/03 [WWSC04] ADCPNortek 2 

Aquadopp 
Garonne France Undular 10/08/10 [CLSRlO] ADV Nortek Vector 64 

(6MHz) 
Garonne France Undular 11/09/10 [CLSRlO] ADV Nortek Vector 64 

(6MHz) 
Se1une France Breaking 24/09/10 [MCSlO] ADV Nortek Vector 64 

(6MHz) 
Selune France Breaking 25/09/10 [MCSlO] ADV Nortek Vector 64 

(6MHz) 

River Bore Date dl u Fr1 z z/d1 
(m) (rn/s) (m) 

Da1y Undular 2/07/03 1.50 4.70 1.04 0.75 0.5 
Dee Breaking 6/09/03 0.72 4.10 1.79 0.55 0.76 
Garonne Undular 10/08/10 1.77 4.49 1.30 0.81 m 0.54(*) 

below surface 
Garonne Undular 11/09/10 1.81 4.20 1.20 0.81 m 0.55(*) 

below surface 
Selune Breaking 24/09/10 0.38 2.00 2.35 0.225 0.59 
Selune Breaking 25/09/10 0.33 1.96 2.48 0.10 0.30 

Notes: d 1: initial water depth at sampling location; Italic data: incomplete data; z: sampling elevation above bed; 
[SFW04]: Simpson et al. (2004); [WWSC04]: Wolanski et al. (2004); [CLSRl 0]: Chanson et al. (20 I 0); [MCS I 0]: 
Mouaze et al. (20 I 0); (*): immediately prior to bore passage. 

All the field observations highlighted the intense turbulence generated by the advancing 
bore (Fig. 10.1 to 10.5). Moule (1923) reported a description of the Qiantang River bore 
(China) from the 13th century: "when the wave [or tide] comes it is steep as a mountain, 
roaring like thunder, a horizontal flying bank of water [or ice} and sidelong shooting 
precipice of snow plunging and leaping in a dreadful manner". Bazin (1865) described 
the destructive power of the Hoogly River tidal bore in India: "the tidal bore creates a 
4 to 5 m high wall of water, and advances with a great noise announcing the flood tide; 
it entrains upstream all the floating debris and sinks the small boats on the shoals and 
in shallow waters". La Condamine (1745) documented the impact of the passage of the 
Amazon River bore: "One can see a wall of water of 4 to 5 m in height, then another, then a 
third one and sometimes a fourth one, that comes close together, and that occupies all the 
width of the channel; this bore advanced very rapidly, breaks and destroy everything". A 
further illustration of intense turbulence is the number of field work incidents, encompassing 
studies in the Dee River, Rio Mearim, Daly River and Selune River. In the Rio Mearim "one 
sawhorse and instrument tumbled along the bottom for 1. 4 km with currents exceeding 
3 m·s- 1, was buried in a sand bank, and had to be abandonecf' (Kjerve and Ferreira, 1993). 
In the Selune River, "the field study experienced a number of problems and failures. About 
4 0 s after the passage of the bore, the metallic frame started to move. The ADV support failed 
completely 10 minutes after the tidal bore" (Mouaze et al., 2010). 
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(A) Undular tidal bore of the Daly Riveron 2 July 2001. 
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(B) Breaking tidal bore of the Selune River on 24 September 2010-0bserved water depth 
and pressure sampled at 0.225 m above bed. 

Figure 10.10. Time-variations of water depth and free-surface discontinuity across a tidal bore. 

-o 
X 

"' X 

~ 
~ 
::J 
en 
en 
~ 
a. 

Some recent free-surface and turbulent velocity measurements were conducted in the 
field with detailed temporal and spatial resolutions (Table 10.2). The data provide an unique 
characterisation ofthe unsteady turbulent field and mixing processes. Table 10.2 summarises 
the basic flow conditions and includes details on the instrumentation. The basic outcomes 
are summarised in this section. 

10.3.2 Field observations 

The propagation of a tidal bore is associated with a sudden rise in free-surface elevation. 
Basically the passage of the tidal bore creates a sudden discontinuity in terms of the flow 
depth followed by large, long-lasting fluctuations of the free-surface behind the bore front. 



Environmental Fluid Dynamics ofTidal Bores: Theoretical Considerations and Field Observations 

"' 
§ 
.f 
X 

.9 
s-
+ 
-::,.'< 

"' 
§ 
.f 
X 

.9 
? 
':> 

+ 
::::> 

1.25 

1.2 

1.15 

1.1 

1.05 

1 

0.95 

0.9 

0.85 

0.75 
-50 -25 0 25 50 75 100 125 150 175 

3 

2.6 

2.2 

1.8 

1.4 

0.6 

0.2 

- 0 .2 

-0.6 

-1 

-100 

(I- T) X (g/(A1/81))1/2 

(A) Undular tidal bore of the Garonne River on 11 September 2010. 
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(B) Breaking tidal bore of the Selune River on 25 September 201 a-Observed 
water depth and press sampled at 0.10 m above bed. 
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Figure 10.11. Time-variations of the dimensionless water depth and longitndinal velocity during a tidal bore 
passage. 

Typical field observations are presented in Figure 10.10 for an undular and breaking bore. 
Figure 10.10 shows the dimensionless water depth as a function of the dimensionless time 
(t- T) where T is the passage time of the bore front. In Figure lO.lOB, some pressure data 
recorded at 0.225 m above the bed are further included. Further details on each field study 
are reported in Table 10.2. 

All the turbulent velocity data show a rapid deceleration of the flow associated with the 
passage of the bore as illustrated in Figure 1 0.11. Figure 10.11 shows some typical time 
variations of the longitudinal velocity component during the propagation of tidal bores. 
The data are presented in a dimensionless form based upon the momentum considerations 
developed above. In most natural systems, the bore passage is associated with a flow reversal 
(Vx < 0) although this might not be always the case (Bazin, 1865; Kjerfve and Ferreira, 
1993). Some large fluctuations of longitudinal velocities are observed during and shortly 
after the bore at all vertical elevations within the water column. The tidal bore acts as 
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(B) Tangential stress p x Vx x vy. 

Figure 10.12. Time-variations ofthe turbulent Reynolds stresses during the passage of the undular tidal bore of 
the Garonne River on ll September 2010. 

a hydrodynamic shock with a sudden change in velocity and pressure fields . The tidal 
bore is always followed by some highly turbulent flow motion with long lasting effects. 
Both the transverse and vertical velocity component data present some large and rapid 
fluctuations with time immediately after the bore passage. The bore passage is further 
a ociated with some relatively-long-period oscillations superposed to some high-frequency 
Lurbulenl nuctuation . The former may be linked with the formation, development and 
advection of large- cale coherent structures behind the front, as hinted by some recent 
numerical simulations (see for example Lubin et al., 2010). 

The unsteady turbulent flow motion is characterised by large turbulent stresses, and 
turbulent stress fluctuations, below the tidal bore and following whelp motion. The data 
indicate that the turbulent stress magnitudes are larger than in the initial turbulent flow 
shortly prior to the bore, and highlight the intense turbulent mixing beneath the tidal bore 
(Fig. 10.12). Figure 10.12 presents some results in terms of normal and tangential Reynolds 
stresses during an undular tidal bore; note that the results are presented in dimensional form. 
The instantaneous turbulent shear stress magnitudes are larger than the critical threshold for 
sediment motion and transport, although the comparison has some limits. In a turbulent 
bore, the large scale vortices play an important role in terms of sediment material pickup 
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(B) Selective dispersion of fish eggs beneath a tidal bore. 

Figure 10.13. Conceptual sketches of the impact of tidal bores on estuarine systems. 

and upward advection. Sediment motion occurs by convection since the turbulent length 
scale is much larger than the sediment characteristic size. Further the high levels of shear 
stresses revealed during the field measurements occur during very short transient times 
(turbulent bursts) rather at a continuous level like in a steady fluvial motion. 

The fi eld data illustrate that a tidal bore induces a very strong mixing in the natural 
channel, for which the classical mixing theories do not account for. During the tidal bore 
passage, and the eroded material and other scalars are advected upstream in the whelps 
and wave motion behind the bore front. The results are consistent with the very strong 
turbulent mixing observed in the tidal-bore affected estuaries, associated with the accretion 
and deposition of sediment materials in the upper estuarine zones. 

10.3.3 Discussion 

Both field measurements and laboratory studies (see bibliography) highlight some key 
features of the impact of tidal bores on the estuarine system. 

The turbulent velocity measurements indicate the existence of energetic turbulent events 
during and behind the tidal bore (Fig. 10.11 & 10.12). These are highlighted by large 
and rapid fluctuations of turbulent velocities and Reynolds stresses. The duration of the 
turbulent events seem larger beneath undular bores, and shorter and more intense beneath 
breaking bores. This type of macro-turbulence can maintain its coherence as the eddies 
are advected behind the bore. Importantly the macro-turbulence contributes to significant 
sediment erosion from the bed and banks, and the upstream advection of the eroded material 
as illustrated in Figure 1 0.13A. 

A recent study showed the preferential dispersion of fish eggs in a tidal bore affected 
estuary (Chanson and Tan, 2010). The fish eggs are typically advected downstream during 
the ebb tide. The arrival of the tidal bore induces a selective longitudinal dispersion of 
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(A) Tidal bore of the Selune River on 7 April 2004 at sunrise- Bore propagation from left to right. 

(B) Tidal bore of the Dordogne River on 12 September 20 I 0 at sunrise - Bore propagation from left to right. 

Figure 10.14. Tidal bore propagation at sunrise . 

the eggs. The lightest, unfertilised fish eggs tend to flow downstream towards the river 
mouth, while the fertilised fish eggs are advected upstream behind the bore (Fig. l0.13B). 
The tidal bore induces a rapid longitudinal spread of the eggs with some preferential mixing 
depending upon their density and stages of development. The fertilised fish eggs are confined 
by the tidal bore to the upper estuary that is the known breeding grounds of juveniles. The 
unfertilised, neutrally buoyant eggs continue downstream possibly up to the river mouth, 
although the strong flood flow may bring them back into the upper estuary at a later stage 
of the tidal cycle. Figure 1 O.l3B illustrates the selective dispersion process. 

More generally the bore occurrence is essential to a number of ecological processes and 
the sustainability of unique eco-systems. The tidal bore propagation induces a massive 
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(A) Road sign to the benak (tidal bore) of the Batang Lupar, Sri Aman (Malaysia) (Courtesy of Antony Colas). 

(B) Stamped postal envelop edited by the French Post Office in 2010 as part of a series on the tidal bores in 

Gironde. 

(C) Tidal bore of the Qiang Tang River (China) overtopping its banks on 31August 2011 during a combination 

of strong spring tide as the typhoon Nanmadol approached the coastline (Photo by ChinaFotoPress/Getty 
Images). 

Figure 10.15. Impact of tidal bores on the human society. 

mixing of estuarine waters stirring the organic matter and creating some rich fishing grounds 
(for example, the Rokan River in Indonesia). 

10.4 CONCLUSION 

A tidal bore is a hydrodynamic shock propagating upstream as the tidal flow turns to rising 
and forming during the spring tides when the tidal range exceeds 5-6 m and the flood 
tide is confined to a narrow fwmelled estuary with low freshwater levels. The tidal bore 
propagation induces a massive mixing of the natural system and its occurrence is critical to 
the environmental balance of the estuarine zone. 

The application of continuity and momentum principles gives a complete solution of 
the ratio of the conjugate cross-section areas as a function of the upstream Froude number 
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Fr1 = ( V1 + U) I ,J g x A 1 I B 1 for a range of channel cross-sections. The effects of the flow 
resistance are observed to decrease the ratio of conjugate depths for a given Froude number. 
The field observations show that the tidal bore passage is associated with large fluctuations 
in water depth and in tantancous elocity component a sociated with intense turbulent 
mixing. ome detai led turbulent velocity mea urement at everal vertical elevations dming 
and shortly after the b re passage high light some seminal features of tidal bores: namely 
ome relatively-long-term o ·cillati ns in term of flow depth and velocity superposed to 

some high-frequency turbulent fluctuations. 
The interactions between tidal bores and human society are complex (Fig. 10.14 & 10.15). 

A tidal bore impacts on a range of socio-economic resources, encompassing the sedimen­
tation of the upper estuary, the impact on the reproduction and development of native fish 
species, and the sustainability of unique eco-systems. A tidal bore can be a major tourism 
attraction like in North America, Far East Asia and Europe (Fig. 10.14 & 10.15A). Anum­
ber ofbores are surfed with tidal bore surfing competitions and festivals in South America, 
Europe and South-EastAsia. But a tidal bore is a massive hydrodynamic shock which might 
become dangerous (Fig. 10.15C) and hinder the local traffic and development. A bore is 
an integral part of the environmental and socio-cultural heritage (Fig. 1 0.15B). It is a fas­
cinating geophysical phenomenon in terms of geo-morphological and biological processes, 
as well as for the estuarine populations. Yet it remains a challenging research topic to the 
scientists, engineers and socio-environment experts. 
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APPENDIX A- LIST OF SYMBOLS 

Symbol 

List of Symbols 

Definition 

cross-section area 
initial cross-section area 
flow cross-section area behind the bore 
characteristic free-surface width 
characteristic free-surface width 
upstream free-surface width 
free-surface width behind the bore 
upstream flow depth 
flow depth behind the bore 
gravitational acceleration constant 
tidal bore Froude number 

Dimensions or Units 

[L2] 
[L2] 
[L2] 
[L] 
[L] 
[L] 
[L] 
[L] 
[L] 
[L T- 2] 

(Continued) 
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List of Symbols 

Symbol Definition 

Fr1 inflow Froude number of tidal bore 
Ffiic 

g 
p 

Q 
T 

X 

y 
z 
f3 
f.Jv 
(J 

p 
(5 

friction force 
gravity acceleration 
pressure 
water discharge 
time of tidal bore passage 
time 
turbulence intensity 
tidal bore celerity positive upstream 
longitudinal velocity component 
transverse velocity component 
vertical velocity component 
initial flow velocity positive downstream 
flow velocity behind the bore positive downstream 
weight force 
longitudinal/streamwise direction 
transverse or radial direction 
vertical direction positive upward 
momentum correction coefficient 
water dynamic viscosity 
angle between bed slope and horizontal 
water density 
surface tension between air and water 

APPENDIX B- SYNOPSIS 

Dimensions or Units 

[N] 
[L T- 2] 

[ m-2] 
[L3 ·T-1 ] 
[T] 
[T] 

[L T- 1] 

[L T- 1) 

[L T- 1] 

[L T- 1] 

[L T- 1
] 

[LT- ] 
[N] 
[L] 
[L] 
[L] 

[M L - I T- 1] 

[M L - 3] 

[N m - 1] 

A tidal bore is a hydrodynamic shock propagating upstream as the tidal flow turns to rising. 
A tidal bore forms during the spring tides when the tidal range exceeds 5-6 m and the flood 
tide is confined to a narrow funnelled estuary with low freshwater levels. The tidal bore 
propagation induces a massive mixing of the natural system. Its occurrence is critical to the 
environmental balance of the estuarine zone. The application of continuity and momentum 
principles gives a complete solution of the ratio of the conjugate cross-section areas as a 
function of the upstream Froude number Fr1 = ( V1 + U) I J g x A 1 I B 1 • The flow resistance 
is observed to decrease the ratio of conjugate depths for a given Froude number. The tidal 
bore passage is associated with large fluctuations in water depth and instantaneous velocity 
components. This is associated with intense turbulent mixing, and sediment scour and 
advection in a natural system. The interactions between tidal bores and human society are 
complex. Both positive and adverse impacts may be encountered. Tidal bore surfing is 
becoming a renown extreme sport. 

APPENDIX C- KEYWORDS 

Tidal bore 
Momentum considerations 
Undular bores 
Breaking bores 
Flow resistance 

Turbulent mixing 
Froude number 
Turbulent stresses 
Sediment processes 
Hydrodynamic shock 
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APPENDIX D - QUESTIONS 

What are the three basic requirements for the occurrence oftidal bores? 
What is the main driving mechanism of a tidal bore? 
How many tidal bores are observed worldwide? 
What is the basic principle used to analyse a tidal bore flow motion? 
Write the tidal bore Froude number and explain each term. 
What is the effect of boundary friction on the tidal bore properties? 
What are the potential impacts of a tidal bore in a natural estuarine system? 
Where can we see tidal bore surfing? 

APPENDIX E- PROBLEMS 

El. Using tide predictions for France and China, predict the likely dates of tidal bore 
occurrence in the Bay of Mont Michel and in the Qiantang River in September 2013. 

This may require to surf the Internet to find the tide predictions for the Bay of Mont 
Michel and the Qiantang River. 

E2. On the 27 Sept. 2000, the flow conditions of the tidal bore of the Dordogne River 
were: initial water depth= 1.5 m, initial flow velocity= +0.22 m/s, observed bore celerity: 
4.8 m/s. Assuming a wide rectangular channel, calculate the flow velocity after the pas­
sage of the bore. (Use the downstream flow direction as positive axis.) Numerical solution: 
V2 = -1.26 m/s (flow reversal), d2 = 2.13 m. 

E3. Plot the relationship between the ratio of conjugate cross-section areas and dimension­
less flow resistance force for two Garonne River data sets listed in Table 10.1. Deduce the 
dimensionless flow resistance force from the observations. 
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