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a b s t r a c t

The transition from supercritical to subcritical flow is characterised by a strong dissipative mechanism, a
hydraulic jump. Herein a comparative analysis of physical data is presented with a focus on a broad range
of two-phase flow parameters. The results show that, for hydraulic jumps with Fr1 = 5.1, the void fraction
data obtained with Re < 4 � 104 could not be scaled up to Re = 1 � 105. Most air–water flow properties
measured with Reynolds numbers up to 1.25 � 105 could not be extrapolated to large-size prototype
structures without significant scale effects in terms of bubble count rate, turbulence, bubble chord time
distributions and bubble cluster characteristics. The findings have some implications of civil and sanitary
engineering designs, because most hydraulic structures, storm water systems and water treatment facil-
ities operate with Reynolds numbers larger than 106 to over 108.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

A hydraulic jump is the sudden and rapid transition from a high
velocity flow into a slower motion in an open channel [17] (Figs. 1
and 2). It is characterised by some substantial energy losses and air
entrapment in the jump roller [21,25]. Fig. 1 presents a hydraulic
jump downstream of a dam spillway during a recent flood event
and Fig. 2A shows a laboratory model. Traditionally, physical
hydraulic models are used to optimize a design and to predict
the behaviour of prototype flow situations. The model is investi-
gated in a laboratory under controlled conditions, and the model
flow conditions are said to be similar to those in the prototype if
the model displays similarity of form, motion and forces [17,19].
In most hydraulic structures including hydraulic jump stilling ba-
sins, it is impossible to satisfy simultaneously all the dynamic sim-
ilarities with geometrically-scaled physical models using air and
water [4,27,30]. It was recently argued that the notion of scale ef-
fects is critically linked with the definition of key parameters [7].

In this contribution, the validity of the Froude similitude is
tested for Fr1 = 5.1 with respect to the two-phase flow properties,
including the distributions of void fraction, bubble count rate,
interfacial velocity, turbulence intensity and integral turbulent
time scales, as well as the probability distribution functions of bub-
ll rights reserved.
4
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on).
ble chord times and clustering properties. The comparison is based
upon a comparative analysis of geometrically scaled data obtained
with the same type of phase detection probes.
2. Dimensional considerations and physical modelling of two-
phase flow properties in hydraulic jump

Any fundamental analysis of hydraulic jumps is based upon a
large number of relevant equations to describe the two-phase tur-
bulent flow motion. Physical modelling may provide some insights
into the flow motion if a suitable dynamic similarity is selected
[7,19,23]. For a hydraulic jump, the relevant dimensional parame-
ters include the air and water physical properties and constants,
the flume characteristics, the inflow conditions, and the local two
phase flow properties. Considering a jump in a smooth horizontal
rectangular channel with an inflow depth d1 and velocity V1, a sim-
plified dimensional analysis yields:
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where C is the void fraction, V the air–water velocity, v0 a character-
istic turbulent velocity, F the bubble count rate defined as the num-
ber of bubbles detected per second in a small control volume, Dab a
characteristic bubble size, Nc the number of bubble clusters per sec-
ond, x the longitudinal coordinate, y the vertical elevation above the
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(A)
 

(B)

Fig. 1. Hydraulic jump stilling basin downstream basin downstream of the Paradise
dam spillway on 30 December 2010 on the Burnett River (QLD, Australia) – Q �
6300 m3/s, W = 335 m, Re � 2 � 107 – Flow direction from left to right. (A) General
view. (B) Details of the jump roller.
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invert, z the transverse coordinate measured from the channel
centreline, q and l the water density and dynamic viscosity
respectively, r the surface tension between air and water, x1 the
longitudinal coordinate of the jump toe, W the channel width, v 01
a characteristic turbulent velocity at the inflow, d the boundary
layer thickness of the inflow (Fig. 2B). Eq. (1) expresses the air–
water turbulent flow properties at a position (x,y, z) within the
hydraulic jump as functions of the inflow properties, fluid proper-
ties and channel geometry using the upstream flow depth d1 as
the characteristic length scale. In the right hand side of Eq. (1),
the 4th, 5th and 6th terms are respectively the upstream Froude
number Fr1, the Reynolds number Re and the Weber number We.

In a hydraulic jump, the momentum considerations demon-
strate the significance of the inflow Froude number [1,20] and
the selection of the Froude similitude derives implicitly from basic
theoretical considerations [9,19].

The Froude dynamic similarity is commonly applied in the
hydraulic literature [5,17,23] including in the present analysis.
The Reynolds number is another relevant dimensionless number
because the hydraulic jump is a turbulent shear flow [18,24,28].
Further the P-Buckingham theorem implies that any dimension-
less number can be replaced by a combination of itself and other
dimensionless numbers. That is, the Froude, Reynolds or Weber
number may be replaced by the Morton number Mo since:

Mo ¼ g l4

q r3 ¼
We3

Fr2Re4 ð2Þ
Eq. (1) may be rewritten as:
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when the same fluids (air and water) are used in models and proto-
type as in the present study, the Morton number Mo becomes an
invariant and this adds an additional constraint upon the dimen-
sional analysis. Eq. (3) yields:
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Physically it is impossible to fulfil simultaneously the Froude and
Reynolds similarity requirements, unless working at full scale. For
example, the air entrainment process is adversely affected by signif-
icant scale effects in small size models [4,7,27].

The Reynolds number was selected herein instead of the Weber
number because the present study focuses on the scaling of proto-
type hydraulic jumps with Reynolds numbers from 106 to in excess
of 109 (e.g. Fig. 1). For such large flows, surface tension is consid-
ered of lesser significance compared to the viscous effects in the
turbulent shear regions [2,4,15,30]. Lastly the Froude and Morton
similarities imply that We / Re4/3 (Eq. (2)).

2.1. Methodology

A number of data sets were re-analysed in the present study
(Table 1). All data sets were geometrically similar based upon a
Froude similitude with undistorted scaling ratio, and the same
types of intrusive phase-detection probes were used (Table 1, col-
umn 7). The geometric scaling ratio was Lscale = 3.3 between the
largest and smallest series of experiments (d1 = 0.04 and 0.012 m
respectively) where Lscale is the geometric scaling ratio defined as
the ratio of prototype to model dimensions. Note that all the exper-
iments were conducted in hydraulic jumps with partially-
developed inflow conditions. The experimental flow conditions
were selected as Fr1 = 5.1 with identical upstream distance x1/d1

between gate and jump toe, and the two-phase flow measure-
ments were performed in the developing air–water flow region
at cross-sections such that (x � x1)/d1 15. For (x � x1)/d1 > 15, the
flow aeration (e.g. void fraction, bubble count rate) was drastically
reduced at the lowest Reynolds numbers and the two-phase flow
properties could not be recorded with the phase-detection probe
technique.

Importantly all experimental data sets were collected in similar
facilities, with the same type of instrumentation as well as signal
processing techniques. A broad range of air–water flow parameters
were systematically tested, including velocity, turbulence, integral
time scale and bubble clustering data analyses. The latter data sets
were never analysed in terms of dynamic similarity to date. Lastly
the range of re-analysed data sets spanned over a wider range of
Reynolds numbers (i.e. an order of magnitude herein) than any
previous studies;

3. Basic results

In the jump roller, the vertical distributions of void fraction pre-
sented a local maximum in the turbulent shear layer while the dis-
tributions of bubble count rate exhibited a sharp maximum in the
shear region (Fig. 2B). Both features are sketched in Fig. 2B and
seen in Fig. 3. Typical comparative results are presented in Figs. 3
and 4 in terms of void fraction and bubble count rate. The physical
data showed drastic scale effects in the smaller hydraulic jumps in
terms of void fraction and bubble count rate distributions. The re-
sults highlighted consistently a more rapid de-aeration of the jump



(A)

(B)

Fig. 2. Air entrainment in a breaking hydraulic jump. (A) d1 = 0.0395 m, Fr1 = 5.1, Re = 1.3 � 105, shutter speed: 1/100 s – Flow from left to right. (B) Definition sketch,
including vertical distributions of void fraction C, bubble count rate F and interfacial velocity V in the jump roller.

Table 1
Physical modelling of air–water flow properties in hydraulic jumps at relatively small Froude numbers based upon an undistorted Froude similitude with air and water.

Reference W
(m)

x1

(m)
d1 (m) Fr1 Re Instrumentation x � x1

(m)
Cmax Fmax

(Hz)

Chachereau and Chanson
[3]

0.50 1.5 0.0395 5.1 1.3 � 105 Dual-tip conductivity (£ 0.25 mm) sampling: 20 kHz for
45 s

0.150 0.203 106.8
0.300 0.192 87.2
0.450 0.070 56.9
0.600 0.050 40.0

Chanson and Gualtieri [12] 0.50 1.0 0.024 5.1 6.8 � 104 Single-tip conductivity (£ 0.35 mm) sampling: 20 kHz for
45 s

0.100 – 107.7
0.200 0.279 80.9
0.300 0.159 61.1

Murzyn and Chanson [22] 0.50 0.75 0.018 5.1 3.8 � 104 Dual-tip conductivity (£ 0.25 mm) sampling: 20 kHz for
45 s

0.075 0.218 55.4
0.150 0.175 43.2
0.225 0.063 25.4

Chanson and Gualtieri [12] 0.25 0.5 0.012 5.1 2.5 � 104 Single-tip conductivity (£ 0.35 mm) sampling: 20 kHz for
45 s

0.020 – 46.4
0.050 – 35.5
0.100 – –

Chanson [6] 0.25 1.0 0.024 5.0 7.7 � 104 Single-tip conductivity (£ 0.35 mm) sampling: 20 kHz for
45 s

0.040 0.364 166.6
0.100 0.227 77.0
0.200 0.168 56.7

Note: Hydraulic jumps with partially-developed inflow conditions; all experiments performed with tap water; Cmax: maximum void fraction in the shear layer; Fmax:
maximum bubble count rate in the shear layer; W: channel width; (–): data unavailable.
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roller with decreasing Reynolds number for a given inflow Froude
number for Re < 68,000, an absence of self-similarity of the void
fraction profiles in the turbulent shear layer for Re < 40,000
(Fig. 3A), and an increasing dimensionless bubble count rate with
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Fig. 3. Dimensionless distributions of void fraction and bubble count rate in the hydraulic jump for Fr1 = 5.1, x1/d1 = 42, W/d1 P 12 and Re = 25,000, 38,000, 68,000 and
125,000. (A, Left) Void fraction data. (A1) (x � x1)/d1 = 4. (B, Right) Bubble count rate data. (B1) (x � x1)/d1 = 4. (A2) (x � x1)/d1 = 8. (B2) (x � x1)/d1 = 8. (A3) (x � x1)/d1 = 12. (B3)
(x � x1)/d1 = 12.
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increasing Reynolds number for a given inflow Froude number
(Fig. 3B). In Fig. 3A, the void fraction profiles in the air–water shear
layer followed an analytical solution of the air bubble advection
equation (Eq. (2)) for Re = 125,000 and 68,000 but were basically
flat for Re = 25,000 and 38,000. In a hydraulic jump, the impinge-
ment point acts as a localised source of air entrainment and a solu-
tion of the air bubble entrainment equation is [8]:
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where X0 = (xþ ur=V1 y)/d1, y0 ¼ y=d1, ur is the bubble rise velocity, and
D# is a dimensionless diffusion coefficient. Eq. (5) is restricted to the air–
water shear layer and it is compared with experimental data in Fig. 3.
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elevation Y90 and monophase wall jet data [16,29].
The vertical distributions of bubble count rate showed a maxi-
mum in the shear region (Figs. 2B and 3). The dimensionless max-
imum bubble count rate data are summarised in Fig. 4 as functions
of the Reynolds number Re. The results highlighted a monotonic
increase in maximum bubble count rate Fmaxd1/V1. No asymptotic
trend was observed within the range of investigated flow condi-
tions (Fig. 4). This is illustrated in Fig. 4 showing the dimensionless
maximum bubble count rate in the air–water shear layer as a func-
tion of the Reynolds number for several dimensionless longitudinal
locations. The data highlighted a monotonic trend as well as the
absence of an asymptotic limit, demonstrating some scale effects
in terms of bubble count rates.

The velocity distribution followed closely a self-similar profile
which was close to a wall jet velocity distribution, as discussed by
Rajaratnam [24] and Chanson and Brattberg [11]. The results for
Re = 38,000 and 130,000 highlighted the self-similarity (Fig. 5A). A
relevant parameter is the shear layer thickness, although its quanti-
tative estimate is not trivial. Based upon the velocity profile data, the
mixing zone may be conceptualised as a boundary layer region, or
inner layer, where 0 < V < Vmax with Vmax the maximum velocity in
a cross-section, and a shear zone, or outer layer, above [16,26]. Such
a model is sketched in Fig. 1B using the terminology introduced by
George et al. [16] based upon similarity considerations. Although
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there is no theoretical justification, the maximum velocity Vmax in a
wall jet may be normalised in term of the outer layer length scale
[16,29]. Herein it is proposed to link the maximum velocity with
the inner layer thickness which characterise the vertical extent of
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Introducing the thickness d of the inner layer and the length scale b
(Fig. 1B) defined as the elevation where V = Vmax/2, the two-phase
flow data are reported in Fig. 5C, where the results are compared
with the characteristic height Y90 of the roller defined as the loca-
tion where the void fraction C equals 0.90 as well as monophase
wall jet data. The data showed an expanding shear zone (inner
and outer layers) with increasing distance from the jump toe. The
inner and outer layer length scales, d and b respectively, were signif-
icantly larger than monophase flow observations.

The turbulent properties (Tu, Txx) showed however some scale
effects (Fig. 6) where Tu is the turbulent intensity: Tu = v0/V, v0 is
the root mean square of the longitudinal velocity component,
and Txx is the auto-correlation integral time scale. Herein Tu was
calculated based upon the correlation analysis of the dual-tip
probe signals [13,14]. In the air–water shear layer, the turbulence
intensity was larger and the integral time scales were smaller for
the largest Reynolds numbers, at the same given dimensionless
location and for an identical Froude number. Fig. 6 includes also
the distribution of auto-correlation time scales, indicating a mono-
tonic increase in turbulent time scales with increasing distance
from the invert. Further the bubble chord time distributions were
not scaled according to a Froude similitude (Fig. 7). Comparatively
larger bubble chord times were observed at low Reynolds num-
bers. This is seen in Fig. 7 presenting the normalised probability
distribution functions of dimensionless bubble chord times. The
present results supported the earlier findings [12,22], and they ex-
tended the findings to a broader range of air–water flow properties
and Reynolds numbers.

3.1. Bubble cluster properties

When two bubbles are closer than a particular time/length
scale, they can be considered a group of bubbles: i.e., a cluster.
The characteristic water time/length scale may be related to the
water chord statistics or to the near-wake of the preceding particle.
Herein the latter approach was applied following CHANSON et al.
[10] and Chanson [8]. Two bubbles were considered parts of a clus-
ter when the water chord time between two consecutive bubbles
was less than the lead bubble chord time. That is, when a bubble
trailed the previous bubble by a short time/length, it was consid-
ered to be in the near-wake of and could be influenced by the lead-
ing particle.
The effects of the Reynolds number were also tested on the bub-
ble clustering properties for Fr1 = 5.1. Some results are shown in
Fig. 8 in terms of the dimensionless number of clusters per second
(Nc d1=V1), the percentage of bubble in clusters and the number of
bubbles per cluster. The data indicated a relatively significant pro-
portion of clustered bubbles, ranging from 26% to 42% (Fig. 8B).
Importantly the dimensionless properties of bubble clusters in
the air–water shear layers were not scaled according to a Froude
similitude for Fr1 = 5.1. The comparative analysis showed that the
dimensionless number of clusters per second, the percentage of
bubbles in cluster and the number of bubbles per clusters in-
creased monotonically with the Reynolds number at a given
dimensionless location (x � x1)/d1 and for a given Froude number
Fr1 = 5.1. This is seen in Fig. 8A–C.

In hydraulic jumps, the level of clustering may give a measure
of the magnitude of bubble-turbulence interactions and associated
energy dissipation. The present findings highlighted that the clus-
tering affected a comparatively greater proportion of bubbles at
high Reynolds numbers, indicating that the interactions between
entrained bubbles and vortical structures were not scaled accu-
rately with the Froude similarity.
4. Discussion

The P-Buckingham theorem implied that only two dimension-
less numbers are relevant to investigate air entrainment in hydrau-
lic jumps using the same fluids in physical models and prototype
(Eq. (4)). The selection of the Froude similitude was based upon
some basic theoretical considerations [9,19,20]. A key feature of
the hydraulic jump is the turbulent shear region. The jump toe is
both a source of vorticity for the shear layer, as well as a source
of entrapped air. The entrained ‘bubbles’ are convected in a region
of high shear stress where bubble-turbulence interactions take
place, including bubble breakup, vortex trapping of bubbles, bub-
ble coalescence, modifications of vortical structures and of their
properties. Since a Froude similarity was selected, the Reynolds
number differed between the various physical models for an iden-
tical Froude number: i.e., the scaling ratio of the Reynolds number
was equal to L3=2

scale. In turn the scaling of turbulent shear stress ten-
sor and vorticity vector differed from the velocity scaling ratio
(L1=2

scale for a Froude similitude).
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Fig. 8. Effects of the Reynolds number on the bubble cluster properties in the air–water turbulent shear layer of hydraulic jumps at the locations where F = Fmax (y = yFmax) �
Fr1 = 5.1, (x � x1)/d1 = 4 and 12. (A, Left) Dimensionless number of cluster per second Nc�d1/V1. (B, Right) Percentage of bubbles in clusters. (C) Number of bubbles per cluster.

Table 2
Physical scaling of hydraulic jump with small inflow Froude number: basic
recommendations.

Air–water flow property Criterion to minimise
scale effects

Remarks

Void faction (C) Re > 4 � 104 Self-similarity for
Re > 4 � 104

Time-averaged velocity (V) Re > 3 � 104 Self-similarity for
Re > 3 � 104

Bubble count rate (F) Lscale = 1 Scale effects unless
at full-sale

Bubble chord time (tch) Lscale = 1 Scale effects unless
at full-sale

Turbulence intensity (Tu) Lscale = 1 Scale effects unless
at full-sale

Auto-correlation integral
time scale (Txx)

Lscale = 1 Scale effects unless
at full-sale

Bubble cluster properties Lscale = 1 Scale effects unless
at full-sale

Note: Experiments performed for Fr1 = 5.1, 2.5 � 104
6 Re 61.3 � 105 with air and

Brisbane tap water.
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The comparative analysis implied that, for hydraulic jumps with
Fr1 = 5.1, (a) the void fraction data obtained with Re < 40,000 could
not be scaled up to Re = 1 � 105 and (b) the bubble count rate data,
turbulence properties, bubble chords and clustering properties
with Reynolds numbers up to 125,000 could not be extrapolated
to large-size prototype structures without significant scale effects
in terms of bubble count rate, turbulence and bubble chord time
distributions. The findings are summarised in Table 2 and they
have some major implications of civil, environmental and sanitary
engineering designs, because most hydraulic structures, storm
water systems and water treatment facilities operate with Rey-
nolds numbers within ranging from 106 to over 108.

For completeness, Chanson [6] tested the effect of the relative
width W/d1, with all other relevant parameters (Fr1, Re, Mo) being
constant. That is:

C;
V
V1

;
v 0
V1

;
F d1

V1
;
Dab

d1
;
Nc d1

V1
; . . . ¼ f

W
d1

� �
ð7Þ

where the inflow Froude and Reynolds numbers were constant: i.e.,
Fr1 = 5.1 and 8.5, Re = 70,000–95,000. The results showed that the
relative channel width had no effect on the air–water flow proper-
ties at the centreline of the channel for W/d1 > 10, including terms
of the void fraction, bubble count rate and bubble chord time distri-
butions. Since all the data tested in Table 1 satisfied W/d1 > 10, the
present results are believed also to be independent of the relative
flume width.

5. Conclusion

The hydraulic jump is a complex phenomenon that remains
incompletely understood. In the present study, a re-analysis of
physical data was conducted with a focus on the air–water flow
properties in hydraulic jumps with Fr1 = 5.1. The Froude similarity
was tested for a range of Reynolds numbers 2.5 � 104 < Re < 1.3 �
105. The analysis was performed over a broad range of two-phase
flow parameters including the distributions of void fraction, bubble
count rate, velocity, turbulence intensity, integral time scale and
bubble clustering properties. The comparative results demon-
strated that, for hydraulic jumps with Fr1 = 5.1, the void fraction
data obtained with Re < 4 � 104 could not be scaled up to
Re = 1 � 105. The bubble count rate data, turbulence properties,
bubble chords and clustering properties with Reynolds numbers
up to 1.25 � 105 would not be up-scaled to large-size prototype
structures without significant scale effects in terms of bubble
count rate, turbulence and bubble chord time distributions. The
basic results are summarised in Table 2.

The findings have some implications of civil engineering, be-
cause most hydraulic structures operate at Reynolds numbers
ranging from 106 to over 108. In a physical model, the flow condi-
tions are said to be similar to those in the prototype flow condi-
tions if the model displays similarity of form, similarity of
motion and similarity of forces. The present results demonstrated
quantitatively that the dynamic similarity of two-phase flows in
hydraulic jumps at relatively small Froude numbers cannot be
achieved with a Froude similarity unless working at full-scale.
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