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a b s t r a c t

In open channel hydraulics, the notion of critical flow conditions and critical depth are not restricted to

open channel flows with hydrostatic pressure distributions. This contribution shows an extension of

the concept of critical flow conditions linked with the minimum specific energy, as introduced by

Bakhmeteff [1] and extended by Liggett [9] and Chanson [5]. It demonstrated that the critical depth

may be defined more broadly including when the pressure field is not hydrostatic.

& 2012 Elsevier Ltd. All rights reserved.
The authors developed a series of expression for the critical
depth in open channels with irregular channel cross-sections. It is
believed that the article thrust and its conclusion missed a key
point. The work is restricted to an open channel flow motion with
hydrostatic pressure distributions although it was not stated
explicitly. In turn the readers could be misled to assume that
the results may apply to a wide range of open channel situations
including weirs, spillway crests, and gates. Fig. 1 illustrates some
flow situations in which the flow is critical but the pressure
distributions are not hydrostatic. It is shown herein that the
critical depth may be derived more broadly for flow situations
with non-hydrostatic pressure distributions.

At critical flow conditions, the specific energy is minimum
[1,2,9]. The cross-sectional averaged specific energy H is com-
monly expressed following Chanson [5]
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where A is the wetted cross-section area, y the flow depth, P the
pressure, V the depth-averaged velocity, vx the longitudinal
velocity component, z the vertical elevation above the crest, g

the gravity constant, r the water density, b the Boussinesq
momentum correction coefficient, and L a pressure correction
coefficient
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For an uniform flow above a flat rectangular invert with
streamlines parallel to the crest, the velocity distribution is
uniform (b¼1), the pressure is hydrostatic (L¼1), and Eq. (1)
equals the classical result: H¼1.5� yc where yc is the critical
depth. For an irregular channel cross-section with uniform velo-
city distribution (b¼1) and hydrostatic pressure (L¼1), the
differentiation of Eq. (1) with respect of the flow depth gives

Q2

g � A3=B
� � ¼ 1 Hydrostatic pressure distribution ð3Þ

at critical flow conditions [8,3]. In many practical applications, the
velocity distributions are not uniform, the streamlines were not
parallel to the invert everywhere (Fig. 1) and the pressure
gradient is not hydrostatic. In turn Eq. (3) becomes inapplicable.

In the general case, the specific energy is minimum at critical
flow conditions [8,9]. For a wide channel, the flow depth y must
satisfy one of four physical solutions [5]
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Fig. 1. Critical flow conditions in open channels. (A) Overflow above the Little

Nerang dam spillway crest on 28 December 2010—Head above crest: 0.4 m,

q¼0.43 m2/s, Q¼14 m3/s. (B) Undular flow in a Venturi flume along an irrigation

canal near Hualien on 10 November 2010—Flow from foreground to background.

β×CD
2×Λ2

Λ
×y

/H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Δ = 0

Solution S1 (Δ < 0)
Solution S3 (Δ < 0)
Solution Δ > 0
Felder&Chanson - Broad-crest

Vo (1992) - Circular weir
Fawer (1937) - Circular weir
Chanson (2005) - Undular flow

Fig. 2. Dimensionless critical depth y�L/H as a function of the dimensional

discharge b�CD
2
�L2—Comparison between analytical solutions (Eq. (4)), broad-

crested weir data [7], circular crested weir data [6,10] and undular flow data [4].
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where CD is a dimensionless discharge, cose¼ 1�2� b� C2
D �L2

and the discriminant D equals
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Eq. (4) expresses the flow depth at critical flow conditions in
the general case when b41 and La1. Eq. (4) is tested against a
series of experimental data in Fig. 2 with the dimensionless water
depth y�L/H1 at critical flow conditions being a function of the
dimensionless discharge b�CD

2
�L2, where b and L were calcu-

lated based upon the pressure and velocity distribution data and
CD was calculated

CD ¼
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In Fig. 2, the physical data showed a good agreement with the
theory, in particular with the solutions S1 and S3 (Do0) (Fig. 2).
The agreement between Eq (4) and data highlighted that the
notion of critical flow conditions may be applied broadly to open
channel flows with non-uniform velocity and non-hydrostatic
pressure distributions.

In summary, the notion of critical flow conditions and critical
depth are not restricted to open channel flows with hydrostatic
pressure distributions. This discussion showed an extension of the
concept of critical flow conditions linked with the minimum
specific energy, as introduced by Bakhmeteff [1]. It demonstrated
that the critical depth may be defined more broadly including
when the pressure field is not hydrostatic.
References

[1] Bakhmeteff BA. O neravnomemom dwijenii jidkosti v otkrytom rusle. (Varied
flow in open channel.) St Petersburg, Russia; 1912. [in Russian].

[2] Bakhmeteff BA. Hydraulics of open channels. 1st (ed.). New York, USA:
McGraw-Hill; 1932 329 pp.

[3] Chanson H. The hydraulics of open channel flows: an introduction. 2nd
edition. Oxford, UK: Butterworth-Heinemann; 2004 630 pp.

[4] Chanson H. Physical modelling of the flow field in an undular tidal bore.
Journal of Hydraulic Research 2005;43(3):234–244 IAHR.

[5] Chanson H. Minimum specific energy and critical flow conditions in open
channels. Journal of Irrigation and Drainage Engineering 2006;132(5):498–502,
http://dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:5(498) – ASCE.

[6] Fawer C. Etude de Quelques Ecoulements Permanents �a Filets Courbes. (Study
of some steady flows with curved streamlines.) Thesis. Lausanne, Switzer-
land; 1937. Imprimerie La Concorde, 127 pp. [in French].

[7] Felder S, Chanson H. Free-surface profiles, velocity and pressure distributions
on a broad-crested weir: a physical study. Journal of Irrigation and Drainage
Engineering, 2012; 138(12), http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.
0000515, in press, – ASCE.

[8] Henderson FM. Open Channel Flow. New York, USA: MacMillan Company;
1966.

[9] Liggett JA. Critical depth, velocity profiles and averaging. Journal of Irrigation
and Drainage Engineering 1993;119(2):416–422 – ASCE.

[10] Vo ND. Characteristics of curvilinear flow past circular-crested weirs. PhD
thesis. Canada: Concordia University; 1992.

dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:5(498)
dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:5(498)
dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:5(498)
dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000515
dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000515

	Explicit equations for critical depth in open channels with complex compound cross sections. A discussion
	References




