Short Communication

Explicit equations for critical depth in open channels with complex compound cross sections. A discussion

Hubert Chanson*

The University of Queensland, School Civil Engineering, Brisbane QLD 4072, Australia

A R T I C L E I N F O

Article history:
Received 17 May 2012
Accepted 8 October 2012
Available online 23 October 2012

Keywords:
Critical depth
Open channel flow
Critical flow conditions
Non-hydrostatic pressure distribution

A B S T R A C T

In open channel hydraulics, the notion of critical flow conditions and critical depth are not restricted to open channel flows with hydrostatic pressure distributions. This contribution shows an extension of the concept of critical flow conditions linked with the minimum specific energy, as introduced by Bakhmeteff [1] and extended by Liggett [9] and Chanson [5]. It demonstrated that the critical depth may be defined more broadly including when the pressure field is not hydrostatic.

© 2012 Elsevier Ltd. All rights reserved.

The authors developed a series of expression for the critical depth in open channels with irregular channel cross-sections. It is believed that the article thrust and its conclusion missed a key point. The work is restricted to an open channel flow motion with hydrostatic pressure distributions although it was not stated explicitly. In turn the readers could be misled to assume that the results may apply to a wide range of open channel situations including weirs, spillway crests, and gates. Fig. 1 illustrates some flow situations in which the flow is critical but the pressure distributions are not hydrostatic. It is shown herein that the critical depth may be derived more broadly for flow situations with non-hydrostatic pressure distributions.

At critical flow conditions, the specific energy is minimum [1,2,9]. The cross-sectional averaged specific energy \(H \) is commonly expressed following Chanson [5]

\[
H = \frac{1}{A} \times \int \left(\frac{v^2}{2g} + z + \frac{P}{\rho \times g} \right) \times dA = \beta \times \frac{V^2}{2g} + A \times y
\]

where \(A \) is the wetted cross-section area, \(y \) the flow depth, \(P \) the pressure, \(V \) the depth-averaged velocity, \(v_x \) the longitudinal velocity component, \(z \) the vertical elevation above the crest, \(g \) the gravity constant, \(\rho \) the water density, \(\beta \) the Boussinesq momentum correction coefficient, and \(A \) a pressure correction coefficient

\[
A = \frac{1}{z} + \frac{1}{A} \times \int \frac{P}{\rho \times g \times y} \times dA
\]

For an uniform flow above a flat rectangular invert with streamlines parallel to the crest, the velocity distribution is uniform (\(\beta = 1 \)), the pressure is hydrostatic (\(A = 1 \)), and Eq. (1) equals the classical result: \(H = 1.5 \times y_c \) where \(y_c \) is the critical depth. For an irregular channel cross-section with uniform velocity, the critical depth \(y_c \) is obtained solving Eq. (1) with respect of the flow depth gives

\[
\frac{Q^2}{g \times (A^2/B)} = 1 \quad \text{Hydrostatic pressure distribution (3)}
\]

At critical flow conditions [8,3]. In many practical applications, the velocity distributions are not uniform, the streamlines were not parallel to the invert everywhere (Fig. 1) and the pressure gradient is not hydrostatic. In turn Eq. (3) becomes inapplicable.

In the general case, the specific energy is minimum at critical flow conditions [8,9]. For a wide channel, the flow depth \(y \) must satisfy one of four physical solutions [5]

\[
\frac{y}{H} \times A = \frac{2}{3} \quad A > 0 \quad \text{Solution S1 (4a)}
\]

\[
\frac{y}{H} \times A = \frac{2}{3} \times \left(\frac{1}{2} + \cos \frac{\theta}{2} \right) \quad A < 0, \text{ Solution S1} (4c)
\]

* Fax: +61 7 336 65 49 99.
E-mail address: h.chanson@uq.edu.au
URL: http://www.uq.edu.au/~c2hchans/

0955-5986/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.flowmeasinst.2012.10.006
In Fig. 2, the physical data showed a good agreement with the theory, in particular with the solutions S1 and S3 ($\Delta < 0$) (Fig. 2).

References

[1] Bakhmeteff BA. O neravnomemom dwijenii jidkosti v otkrytom rusle. (Varied flow in open channel.) St Petersburg, Russia; 1912. [in Russian].

