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ABSTRACT. -A free-surface flow can change from a supercritical to subcritical flow with a strong dissipative pheno
menon called a hydraulic jump. Herein the progress and development in turbulent hydraulic jumps are reviewed with a 
focus on hydraulic jumps operating at large Reynolds numbers typically encountered in natural streams and hydraulic 
structures. The key features of the turbulent hydraulic jumps are the highly turbulent flow motion associated with some 
intense air bubble entraimnent at the jump toe. The state-of-the-art on the topic is discussed based upon recent theoretical 
analyses and physical data. 
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Le ressaut hydraulique: turbulence et entrainement d'air 

RESUME.- La transition d'un ecoulement a surface libre tonentiel en un ecoulement fluvial s'effectue avec un proces
sus dissipatif, appele un ressaut hydraulique. Dans cette syntbese, on decrit les developpements recents des connaissances 
sur les ressauts hydrauliques turbulents, avec grands nombres de Reynolds, qui sont typiques des ecoulements dans les 
rivieres et dans les ouvrages hydrauliques. Les caracteristiques principales de ces ressauts sont le caractere extremement 
turbulent de l'ecoulement, couple a un entrainement important d'air dans le rouleau de deferlement. On discute les der
niers developpements en se basant sur les equations theoriques et des resultats physiques. 

Mats clefs : ressaut hydraulique, turbulence, entrainement d'air, modele physique, modele numerique, similarite dyna
mique 

I. INTRODUCTION 

A free-surface flow can change from subcritical to super
critical in a relatively smooth manner at a weir crest. The 
flow regime evolves with the occurrence of critical flow 
conditions associated with relatively small energy loss [20]. 
On the other hand, the transition from supercritical to subcri
tical flow is characterised by a strong dissipative mechanism, 
called a hydraulic jump (Fig. 1 to 3). A hydraulic jump is an 
extremely turbulent flow associated with the development 
of large-scale turbulence, surface waves and spray, energy 
dissipation and air entrai11111ent. Figure 1 shows a hydraulic 
jump stilling basin downstream of a spillway during a major 
flood. Figure 2 shows a small hydraulic jump in an inigation 
channel, and Figure 3 presents a hydraulic jump in the Todd 
River (Australia). The dark colour of the waters highlights 
the strong sediment load in the natural system (Fig. 3). The 
flow within a hydraulic jump is extremely complicated [19], 
and it remains a challenge to scientists and researchers [7], 
[34]. 

The key features of hydraulic jumps in natural systems 
and hydraulic structures are the turbulent nature of the 
flow and the air entrapment at the jump toe associated with 
intense air-water mixing in the hydraulic jump roller, for 
example seen in Figures 1 to 3. The turbulence measure
ments in hydraulic jumps are limited, but for the pioneering 
study of Rouse et al. [19] and the hot-film data of Resch and 
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Leutheusser [ 46]. The first two-phase flow measurements in 
hydraulic jumps were performed in India by Rajaratnam [ 41] 
and Thandaveswara [50]. An impm1ant study was the work 
of Resch and Leutheusser [ 4 7] highlighting the effects of 
the inflow conditions on the air entrainment and momentum 
transfer processes. In the last fifteen years, some significant 
advances included Chanson [4], [6], [10], Mossa and Tolve 
[32], Chanson and Brattberg [11], Murzyn et al. [37], [38] 
and Rodriguez-Rodriguez et al. [48]. 

This paper reviews the progress and development in the 
understanding of turbulence and air-water flow properties 
of hydraulic jumps. The focus is on the turbulent hydraulic 
jump with a marked roller operating with high-Reynolds 
numbers; such flow conditions are typical of natural rivets 
and hydraulic structures. These hydraulic jumps are charac
terised by some complicated turbulent air-water flow fea
tures. 

11. THEORETICAL APPROACH 

11.1. Momentum considerations 

In a hydraulic jump, the transition from supercritical to 
subcritical flows is associated with a sudden rise in the free
surface elevation and a discontinuity of the pressure and 
velocity fields. The integral form of the equations of conser
vation of mass and momentum gives a series of relationships 
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Figure 1 : Hydraulic jump stilling basin in operation downstream of Paradise dam spillway (Australia) on 30 Dec. 2010 - Q = 

6,300 m3/s, Re = 1.9x107 

Figure 2 : Hydraulic jump in an irrigation channel at 
Taroko (Taiwan) on 10 Nov. 2010 -Flow from foreground 
right to background left 

between the flow properties upstream and downstream of the 
jump [20], [15], [28], [52]: 

(1) 

where V is the cross-sectional-averaged flow velocity, A 
is the cross-section area, p is the water density assumed 
constant, g is the gravity acceleration, ~ is a momentum 
correction coefficient, P is the pressure, the subscripts 1 and 
2 refer respectively to the upstream and downstream flow 
conditions, Fr,;c is the flow resistance force, W is the weight 
force and e is the angle between the bed slope and horizon
tal (Fig. 4). The upstream and downstream flow conditions 
are referred to as conjugate flow conditions. Equations (1) 
and (2) are valid for a stationary hydraulic jump in an ine
gular channel and may be extended to hydraulic jumps in 
translation (surges, bores). 

In Equation (2), the difference in pressure forces may 
be derived assuming a hydrostatic pressure distribution 
upstream and downstream of the hydraulic jump. The net 
pressure force resultant consists of the increase of pressure 
pg(d

2
-d

1
) applied to the upstream flow cross-section A

1 
plus 

the pressure force on the area 11A defined in Figure 4, where 
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Figure 3 : Hydraulic jump in the Todd River (A lice Springs 
NT, Australia) in Jan. 2007 (Courtesy of Mrs Sue McMinn
Bavin) - Flow from left to right, note the dark brown colour 
of the water that is evidence of heavy sediment load - The 
Todd River is an ephemeral river that flows only a few times 
per year 

d
1 

and d
2 

are the upstream and downstream flow depths 
(Fig. 4). Neglecting the flow resistance (F me = 0), the effect 
of the velocity distribution (~ 1 = ~2 = 1) and for a flat hori
zontal channel (6 = 0), the combination of the continuity and 
momentum principle gives a series of relationships between 
the flow properties in front of and behind the jump: 

(z-fJ +8fF'/ -(2-f) 
B' (3) 

B 

where Fr1 is the upstream Froude number: Fr
1 

= V/ 
~ g A1 I B1 , B1 is the initial free-surface width (Fig. 4), and 
the characteristic widths B and B' are defmed as: 

(4) 

A2 

J J(d2 - y) dA 
B' = z_A,...._ _ _ _ _ 

(dz- d1)2 
(5) 
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Figure 4 : Sketch of a hydraulic jump in an irregular channel 

Equation (3) gives an analytical solution of the cross-sec
tional ratio A/ A

1 
as a function of the upstream Froude num

ber Frl' the ratio B'/B and the ratio B 1/B. For a rectangular 
channel (B = B' = B

1
), the result (Eq. (3)) may be simplified 

into the Belanger equation [2], [8]: 

(6) 

In presence of some flow resistance, the combination of 
the continuity and momentum principles for a hydraulic 
jump on a horizontal channel (8 = 0) yields: 

p,iz = ..!_ Az Bl ((2- !!...) + !!_ A2 J + ....!!:L_ Ffi-ic z , (7) 
2 A1 B B B A1 A2 - A1 A1 

pgli 

For a given Froude number, the solution of Equation (7) 
implies a smaller ratio of the conjugate cross-sectional areas, 
hence a smaller ratio of conjugate depths, with increasing 
flow resistance to satisfy the momentum principle. The fin
ding is consistent with physical data in rectangular chan
nels [43], [27], [40], and it applies to any cross-sectional 
shape. Note that the effects of flow resistance decrease with 
increasing Froude number, becoming small for upstream 
Froude numbers greater than 2 to 4 depending upon the 
cross-sectional properties and bed roughness. In absence of 
friction, Equation (7) gives back Equation (3). 

11.2. Dynamic similarity 

Detailed analytical, physical and numerical studies of 
hydraulic jumps require a large number of relevant equations 
to describe the three-dimensional air-water turbulent flow 
motion. The relevant parameters needed for the dimensional 
analysis include the fluid properties and physical constants, 
the channel geometry and inflow conditions, and the air
water turbulent flow properties characteristics [22]. For a 
hydraulic jump in a horizontal, rectangular channel, the rele
vant length scale is the upstream flow depth d and a simpli-
fied dimensional analysis yields: 

1 

d d' l<~oe dl V v' D F d ----- C ab I 
d], dl, 11: ' , 11:,11: ·~·--v;-,··· 

=J;[x-xl Z_ .!__ x1 v1 ' 8 Y) VA gf-1
4 J 

I d , d, d 'd ,~,-d ' r:-:f,p-,--3 , ... 
I 1 1 I r 1 1 V g d1 fl p (J ' (8) 
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where d is the free-surface elevation, d' is a characteris
tic free-surface fluctuation, F,

0
, is the jump toe fluctuation 

frequency, C is the void fraction, V is the velocity, v' is a 
characteristic turbulent velocity, Dab is a characteristic size 
of entrained bubbles, F is the bubble count rate, x is the 
longitudinal coordinate, y is the vertical elevation above 
the invert, z is the transverse coordinate measured from 
the channel centreline, x

1 
is the longitudinal coordinate of 

the jump toe, v
1

' is a characteristic turbulent velocity at the 
inflow, o is the boundary layer thickness of the inflow, p and 
fl are the water density and dynamic viscosity respectively, 
cr is the surface tension between air and water. Equation 
(8) gives an expression of the air-water turbulent flow pro
perties at a position (x,y,z) along the hydraulic jump rol
ler as functions of the inflow properties, channel geomehy 
and fluid properties. In the right handside, the 7th, 8th and 
9th terms are respectively the upstream Froude number Frl' 
the Reynolds number Re and the Morton number Mo. The 
above analysis does not take into account the characteristics 
of any instrumentation nor the mesh size of a numerical 
model. With a numerical investigation, the quality of the 
results is closely linked with the type of grid and mesh size 
selection [17], [31]. In a physical investigation, the size of 
a probe sensor, the sampling rate and possibly other probe 
characteristics do affect the minimum size detectable by 
the measurement system. To date most systematic studies 
of scale effects affecting air entrainment processes were 
conducted with the same instrumentation and sensor size [9]: 
i.e., the probe sensor size was not scaled down in the small 
size models. 

When the study is performed on the centreline of a wide 
channel, using the same fluids (air and water) in both model 
and prototype, the flow is basically two-dimensional and the 
Morton number becomes an invariant. Equation (8) may be 
simplified into: 

d d' F,oe d1 C V v' Dab F d1 
d'd,-v.--, 'V:'V.'T'V,··· 

I 1 I 1 1 I 1 

=f (x-x1 Z. ~ ~ ~ Fr ReJ 
2 d t d , d , Tf , d , 1, (9) 

1 1 I '1 1 ' 

In free-surface flows including hydraulic jump studies, the 
gravity effects are important as shown by Equations (3) and 
(9). The Froude dynamic similarity is commonly used [39], 
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[28] and will be considered herein. It is however impossible 
to satisfy simultaneously the Froude and Reynolds simila
rities with a geometrically-similar model. For example, the 
turbulence properties and air entrainment process are adver
sely affected by significant scale effects in small size models 
[44], [53], [5]. Scale effects in turbulent hydraulic jump 
studies were detailed recently [12], [35]. 

Ill. BASIC FLOW PATTERNS AND FREE
SURFACE PROPERTIES 

The hydraulic jtunp is classified in terms of its upstream 
Froude number Fr

1
• For a Froude number slightly above 

unity, the jump front is followed by a series of stationary 
free-surface undulations. This is the undular hydraulic jump 
[25], [13], [7]. For Froude ntunbers larger than 2 to 3, the 
jump has a marked turbulent roller region associated some 
highly turbulent motion with large-scale vortical structures 
and an air-water flow region (Fig. I to 3) [21 ], [ 48] . Some 
basic featmes of the turbulent jump include the strong spray 
and splashing above the jump toe and roller, as well the flow 
discontinuity at the impingement point that is a source of 
vorticity and of entrained air bubbles. Figure 5 shows two 
high-shutter speed photographs of the jump toe, illustrating 
the variety of short-lived air-water structures projected above 
the hydraulic jump. Both photographs were taken looking 
downstream at the jump toe, the impingement perimeter and 
the associated free-surface discontinuity. 

(A) d
1 

= 0.0405 m, x, = 1.5 m, Fr
1 

= 4.32, Re=l.l x 105 
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In the remaining paragraphs, the focus is on the turbulent 
jump with a marked roller. 

111.1. Free-surface profiles and turbulent fluctuations 

Some typical free-surface proft.les of turbulent hydraulic 
jumps are presented in Figure 6 for Froude numbers ranging 
from 2.4 to 8.5 . The data sets were collected using non
intrusive acoustic displacement meters. Figure 6A presents 
the longitudinal distributions of mean water depth d and 
standard deviations d' of the water elevations as functions 
of the dimensionless distance (x-x

1
) from the jump toe. The 

physical data show some longitudinal profiles that are very 
close to the photographic observations through the glass 
sidewalls and to classical results [1], [45]. Overall the longi
tudinal free-surface elevations present a self-similar profile: 

2.4 < Fr
1 

< 8.5 (10) 

where L, is the roller length. Equation (10) is compared with 
experimental data in Figure 6B together with the theoretical 
solution ofValiani [51]. 

The longitudinal distributions of the water elevation stan
dard deviation d' show a significant increase in free sur
face fluctuations immediately downstream of the jump toe 
(Fig. 6A). A peak of turbulent fluctuations (d')max is observed 
in the first half of the roller typically as seen in Figure 6A 

(B) d
1 

= 0.0395 m, x1 = 1.5 m, Fr1 = 5.1, Re=I.2x 10s 

Figure 5 : High-shutter speed photographs of air-water projections in hydraulic jumps, looking downstream at the impingement 
point and free-surface discontinuity at the jump toe - Flow from foreground to background 
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Figure 6 : Free-surface profiles of turbulent hydraulic jumps (Data: Murzyn and Chanson [36}, Chachereau and Chanson [3}) 

[33], [36], (3]. In Figure 6A, the maximum standard devia
tion of the free-surface elevation is nearly 0.75 times the 
inflow depth ((d')"'":::: 0.75d 1) for Fr1 = 5.1. The free surface 
becomes more turbulent with increasing Froude number, and 
the physical data demonstrate a monotonic increase in maxi
mum free-surface fluctuations with increasing Froude num
ber at the power 1.235. This is seen in Figure 7 presenting 
(d')"'jd, as a function of the upstream Froude number Fr1• 

Since the flow properties upstream and downstream of the 
jump must satisfy the momentum equations, the Belanger 
equation (Eq. (6)) may be compared with some physical data 
in Figure 8. The results show a close agreement between 
the data and theory neglecting boundary friction and flow 
resistance. 

1.5 

0.5 

3 

V 

5 
Fr1 

• 

t/ 

/ 
/. • 

7 9 

Figure 7 : Maxim um o.f turbulent jluc fllations (d ') j d in 
lllrbulem ;· 11 "'" 1 

11111/) ro ers as a function of Froude number Fr 
(Data: Moll(rze et al. [33], Kucukali and Clwnson [23/ 
Murz 111 and hanson {36), Chachereau and Chanson {3}) 

9 

In a smooth channel, the longitudinal position of the 
hydraulic jump toe fluctuates with time. The jump toe pulsa
tions are believed to be caused by the growth, advection, and 
pairing of large-scale vortices in the developing shear layer 
of the jump (30]. The dimensionless jump toe frequency 
F,oAN, ranges between 0.003 and 0.006 independently of 
the upstream Froude nmnber. For comparison, the characte
ristic frequency F rs of the free-surface fluctuations tends to 
be larger at small Froude numbers. The re-analysis of seve
ral data sets yielded [3]: 

Frs dt ( ) 
-v;-=0.143exp -0.27Ftj, 2.4 < Fr

1
< 6_5 (ll) 
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Figure 8 : Ratio of conjugate depths djd
1 

for hydraulic 
jumps in horizontal rectangular channels - Comparison 
between the Be/anger equation (Eq. (6)) and experimental 
data (Data: Murzyn et al. [38}, Chanson [8.]. [10}, Murzyn 
and Chanson [36}, Chachereau and Chanson [3}) 
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111.2. Free-surface turbulent time and length scales 

In two independent studies [33] , [3], the free-surface fluc
tuations were recorded simultaneously at two locations with 
known, controlled separations distances. The data analyses 
yield the integral free-surface time and length scales and 
some results are presented in Figure 9. The turbulent free
surface scales characterise the coherent structures acting 
next to the free-surface of the hydraulic jump roller. The 
integral free-surface length scales L,,. and Lxz increase with 
increasing distance from the jump toe (Fig. 9A). The longi
tudinal length scale L,,. ranges from 1.2d

1 
to 3.5d

1
, and the 

transverse length scale L" from 1.2d
1 

to 2.6dl' for longitu
dinal positions (x-x

1
)/d

1 
between 7 and 23. The results are 

linked with the inflow Froude number Frl and the data sets 
are best fitted by: 

L ... x-x1 ( ) _,!L =0.112--+ 3.02-0.545Frj , 2.4<Fr
1
<5.1 

dl d\ 
(12a) 

L ._ x-x1 ( ) ----""- = 0.0627--+ 2.54-0.371 Flj , 2.4<Fr
1 
<5.1 (l2b) 

d\ d, 

At a given longitudinal location for a given Froude num
ber, the longitudinal integral length scale is slightly larger 
than the transverse length scale, implying that the turbulence 
was not homogeneous at the free surface of the hydraulic 
jump. 

The integral turbulent time scale data exhibit a linear 
increase with increasing distance from the jump toe for a 
given Froude number (Fig. 9B). The trend is linked with an 
increase in large coherent structure sizes and slower convec
tion velocities with increasing distance from the jwnp toe. 
The data are independent of the Froude number, and the 
integral turbulent time scales were best correlated by: 

(13a) 

5 
• Lxx• Frt=5.1 
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4 0 Lxz Frt=5.1 
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Tz =0.4670+0.0132--1 ft x - x 

- dl 
2.4 < Fr

1 
< 5.1 (13b) 

The integral time scales are observed to be very similar in 
the longitudinal and transverse directions, T x and T z respec
tively, although the integral length scale data show some dif
ferences between transverse and longitudinal results (Fig. 9). 

IV. AIR-WATER FLOW PROPERTIES 

The analytical and numerical modelling of the air-water 
mixing zone in turbulent hydraulic jumps is primitive 
because of the large number of relevant equations to des
cribe the two-phase turbulent flow motion as well as the 
limited validation data sets [ 17], [31]. At the same time, 
the air-water flow measurements have been restricted by 
the complex nature of the flow, including the high turbu
lence levels, the strong interactions between entrained air 
and vortical structures and the recirculation motion in the 
roller. The traditional monophase flow metrology such as 
acoustic Doppler velocimetry (ADV), particle image veloci
metry (PIV) and laser Doppler anemometry (LOA) is unsui
table. Some specialised multiphase flow techniques include 
phase detection probes, hot-film probes, fibre phase Doppler 
anemometry (FPDA) and bubble image velocimetry (BIV}, 
although the latter two techniques are restricted to low void 
fractions. To date the most successful physical data set were 
obtained with intrusive phase-detection probes, typically 
electrical and optical fibre needle probes. A summary of 
results follows. 

IV.l. Basic air-water properties 

The vertical distributions of void fractions C and bubble 
count rates F highlight two main air-water flow regions in 
the hydraulic jump roller (Fig. lOA). That is, the air-water 
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(B) Integral turbulent time scales 

Figure 9 : Longitudinal distributions of integral ji-ee-swface length and time scales in hydraulic Jumps in horizontal rectangular 
channels - (Data: Mouaze et al. [33}, Chachereau and Chanson [3]) 
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Figure 10 : Vertical distributions of void fraction and bubble count rate in turbulent hydraulic jumps 

shear layer and the upper free-surface region. Herein the 
bubble count rate f is defined as the number of bubbles 
detected by the probe sensor per second. The developing 
shear layer is characterised by some strong interactions 
between the entrained air bubbles and the vortical structures, 
associated with a local maximum in void fraction cmox and 
a maximum bubble count rate F

00
.,. In the shear layer, the 

distributions of void fractions follow an analytical solution 
of the advective diffusion equation for air bubbles: 

where Q . is the entrained air volume, Q is the water dis
charge, D# is a dimensionless air bubble diffusivity typi
cally derived from the best data fit, X' = Xld,, y' = y/d" 
X = x- x1 + u, I V, x y, u, is the bubble rise velocity [I 0]. 
In the upper free-surface region above, the void fraction 

11 

increases monotically with increasing distance from the bed 
from a local minimum CY. to unity. Figures lOB and IOC 
present some typical vertical distributions of void fraction 
and bubble count rate. 

The air-water interfacial velocity distributions in the shear 
zone exhibit a self-similar profile that is close to that of 
monophase wall jet flows [42], [11]: 

1 

V [ y JN 
Vmax = Yvmax 

for _Y_ <L 
Yvmax 

V- V.-ecirc = exp[--2lll. 765( y -J~oV.Smax JJ2] ' 
v;nax - V,.ecirc 

y 
for 1 < --< 3 to 4 

firmax 

(15a) 

(15b) 

where V mox is the maximum velocity in a cross-section mea
sured at y = y"'"""' vrecirc is the recirculation velocity mea-
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Figure 11 : Vertical distributions of inte1jacial velocity in hydraulic jumps 

sured in the upper free-surface region, y
0 5 

is the vertical 
elevation where V = V,./2 and N is a constant (N :::: 6) 
(Fig. llA). Equation (!Sa) expresses the no-slip condition 
imposed at the bed: V(y=O) = 0. Equation (15b) is compared 
with physical data in Figure liB. The maximum velocity 
v ... ax decays exponentially with increasing distance from the 
jump toe. Experimental data compare favourably with an 
empirical correlation: 

V,,,, = exp(-0.028 x- x, J 
v, d, 

x-x 
for 0< - ---1 < 80 &5.1 < Fr1 < 11.2 (16) 

d, 

with a trend similar to wall jet and monophase hydrau
lic jump flow data [29]. In the recirculation region above 
the shear layer, the time-averaged recirculation velocity 
V""" is negative, and some data sets yield in average: 
v,",) V," - -0.4 [10]. 

The turbulence intensity distributions show some very 
high levels of turbulence in the shear zone, possibly linked 
with the bubble-induced turbulence in the jump shear region. 
Further the turbulence levels increase with increasing dis
tance from the bed yid, and with increasing Froude number. 
The fonner trend would be consistent with Prandtl mixing 
length theory as well as monophase hydraulic jump flow 
data [29], [26]. The distributions of air-water integral turbu
lent length scales show similarly a monotonic increase with 
increasing distance from the invert (Fig. 12). The air-water 
integral turbulent length scale L,z characterises a characteris
tic size of large vortical structures advecting the air bubbles 
in the hydraulic jump roller [6]. Typical results are presented 
in Figure 12. 

IV.2. Air-water flow structures 

The time-averaged air-water properties such as the void 
fraction, bubble count rate and air-water interfacial velo
city are gross, macroscopic parameters that do not give any 
information on the microscopic structure of the two-phase 
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• Lxz (x-x,)ld,=4.0 
+ Lxz (x-x,)ld,=8.1 
X C (x-xJ)/d 1=8.1 

0 0.2 0.4 0.6 0.8 

Figure 12 : Vertical distributions of integral air-water tur
bulent length scales and void fraction in hydraulic jumps -
Data: Chanson [6], d

1 
= 0.0245 m, Fr

1 
= 7.9, Re = 9.4xJ04 

flow. Phase detection probes can provide further details on 
the longitudinal pattern of air and water structures including 
bubbles, droplets, and air-water packets. 

In the hydraulic jump, a phase-detection intrusive probe 
cannot discriminate accurately the direction of the velocity, 
and the most reliable infonnation is the air and water chord 
time data: i.e, the detection times of bubbles/droplets by the 
probe sensor. Figure 13 shows some typical nonnalised dis
tributions of bubble chord time in the hydraulic jump shear 
layer (Fig. 13A) and droplet chord time distributions in the 
upper spray region (Fig. 13B). For each graph, the histogram 
columns represent each the probability of particle chord time 
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Figure 13 : Normalised probability distribution functions (PDF) of air/water chord time in hydraulic jumps 

in a 0.5 ms chord time interval. For example, the probability 
of air chord time from 1 to 1.5 ms is represented by the 
column labelled I ms. Air-water chord times larger than 
10 ms are not shown for better readability. Overall the phy
sical data sets show a broad spectmm of bubble and droplet 
chord times in the hydraulic jumps. The range of chord 
times extends over several orders of magnitude, including 
at low void fractions, from less than 0.1 ms to more than 
10 ms. More the distributions are skewed with a preponde
rance of small air/water chord times relative to the mean. 
In the shear zone, the probability distribution functions of 
bubble chord time tend to follow in average a log-normal 
distribution, and a similar fmding was observed in plunging 
jet flows [16], [14]. 

In addition the probe signal outputs provide some details 
on the longitudinal pattern of air-water structures inclu
ding bubble clustering. The study of clustering events may 
be useful to infer if the formation frequency responds to 
some particular frequencies of the flow. A concentration of 
particles within some relatively short time intervals may 
indicate some clustering, or it may be the consequence of 
a random occurrence. Figure 14 shows the occurrence of 
pairing in time in the developing shear layer of a hydrau
lic jump. The binary pairing indicator is unity if the water 
chord time between adjacent bubbles is smaller than the 

13 

lead particle chord time and zero otherwise. The grouping 
of vertical lines in Figure 14 is an indication of patterns in 
which bubbles tend to form bubble clusters. A clustering 
analysis method may be based upon the study of water chord 
between two adjacent bubbles/droplets. If two particles are 
closer than a particular length scale, they can be considered 
a group/cluster of bubbles/droplets. The characteristic water 
length scale may be related to the water/air chord statistics: 
e.g., a bubble/droplet cluster may be defined when the water 
chord was less than a given percentage of the median water/ 
air chord. Another criterion may be linked with the near
wake of the lead particle, since the trailing particle may be 
influenced by the leading particle wake. A complementary 
method may be based upon an inter-particle arrival time 
analysis . The inter-particle arrival time is defined as the 
time between the arrivals of two consecutive particles. The 
distribution of inter-particle arrival times may provide some 
infmmation on the randonmess of the structure within some 
basic assumptions. A randomly dispersed flow is one whose 
inter-particle arrival time distributions follow inhomoge
neous Poisson statistics assuming non-interacting point par
ticles. An ideally dispersed flow is driven by a superposition 
of Poisson processes of particle sizes. Hence any deviation 
from a Poisson process would infer particle clustering. Both 
critera were applied to hydraulic jump flows [6], [18]. 
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Figure 14 : Binary pairing indicator of closely spaced bubble pairs in the developing shear layer of a hydraulic jump 
(1 = water chord time smaller than once the lead bubble chord time (i.e. near wake); 0 = otherwise) - d

1 
= 0.0405 m, Fr, 

3.8, Re= 9,7xJ04
, (r-x)ld, = 3.7, yid, = 1.19, C = 0.11, F = 53.8 Hz (Data: Chachereau and Chanson [3]) 

Figure 15 presents some typical results of bubble clus
tering analyses in the developing shear layer of turbulent 
hydraulic jumps. It shows the longitudinal distributions of 
the percentage of bubbles in clusters for several upstream 
Froude numbers. For these data sets, two bubbles are consi
dered parts of a cluster when the water chord time between 
two consecutive bubbles is less than the bubble chord time 
of the lead particle. That is, when a bubble trails the pre
vious bubble by a short time/length, it is in the near-wake 
of and could be influenced by the leading particle. Note that 
the cluster criterion is based upon a comparison between 
the local, instantaneous characteristic time scales of the air
water flow, and it is independent of the local air-water flow 
properties. The results highlight that a large proportion of 
bubbles are parts of a cluster structure in the air-water shear 
zone (Fig. 15), while the percentage of bubbles in clusters 
decreases with increasing longitudinal distance. 

Interestingly all the cluster analysis methods tend to yield 
relatively close results independently of the cluster definition 
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criterion. They show a large proportion of cluster bubbles 
close to the impingement point, implying some very strong 
interactions between entrained air bubbles and vortical struc
tures in the developing shear layer. The decay in number 
of cluster bubbles with longitudinal distance implies some 
lesser bubble-turbulence interactions further downstream. It 
must be stressed however that the approach only applies to 
the longitudinal air-water structures, and it does not consider 
particles travelling side by side. 

V. CONCLUSION 

This article reviews the progress and development in the 
understanding of hydraulic jumps. The focus is on the tur
bulent hydraulic jump with a marked roller operating with 
high-Reynolds numbers that is commonly encountered in 
natural rivers and man-made stmctures (Fig. 1 to 3). These 
hydraulic jumps are characterised by the highly turbulent 
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(B) Hydraulic jumps with relatively large inflow Froude 
numbers (Data: Chanson [10]) 

Figure 15 : Percentage of bubbles in clusters in the air-water shear layer of hydraulic jumps at locations where F = F 
Cluster criterion: water chord time smaller than once the lead bubble chord time (i.e. near wake) ~·u• 
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nature of the flow and intense air bubble entrainment at the 

jump toe. 
. Some theoretical considerations show that the basic 
dimensionles parameter is the up tream Froude number 
Fr

1 
= V/ JgA11 8

1 
• A dimensional analysis suggests that 

some viscous . ea le effects may take place in small geome
trically-similar models. Some detailed free-surface measu
rements highlight the fluctuating nature of the fi'ee-surface. 
The maximum free-surface fluctuations are proportional to 
the upstream Froude number at the power 1.2. The free-sur
face integral length and time scales increase with increasing 
distance from the jump toe, and the differences between 
longitudinal and transverse integral scales imply that the 
turbulence is not homogeneous at the free surface of the 
hydraulic jump. 

The air-water flow measurements in turbulent hydraulic 
jumps highlight two flow regions: a developing shear layer 
and an upper free-surface region. The air-water shear layer is 
characterised by a local maximum in void fraction, a maxi
mum bubble count rate and an interfacial velocity distribu
tion that follows a shape close to a wall jet profile. The air/ 
water chords in the developing shear layer present a broad 
spectrum of bubble/droplet chord times in the hydraulic 
jumps. The range of chord time extends over several orders 
of magnitude, including at low void fractions, and the distri
butions are skewed with a preponderance of small air/water 
chord times relative to the mean. Some clustering analyses 
show a large percentage of cluster bubbles patiicularly close 
to the entrapment point, implying some vety strong interac
tions between the entrained air and the vortical stmctures. 

In a natural stream, however, the hydraulic jump flow is 
a three-phase flow motion characterised by intense sediment 
motion as illustrated in Figure 3. Such a flow motion is chal
lenging as shown by Macdonald et al. [24]. 
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