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Abstract 

Some forms of mud flows and debris flows exhibit a non-Newtonian thixotropic behaviour, 

and this study describes a basic study of dam break wave with thixotropic fluid. Theoretical 

considerations were developed based upon a kinematic wave approximation of the Saint-

Venant equations down a prismatic sloping channel and combined with the thixotropic 

rheological model of Coussot et al. (2002). The analytical solution of basic flow motion and 

rheology equations predicts three basic flow regimes depending upon the fluid properties and 

flow conditions, including the initial degree of jamming of the fluid. The present work is the 

first theoretical analysis combining successfully the basic principles of unsteady flow motion 

with a thixotropic fluid model, which was verified with systematic laboratory experiments. 
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1. INTRODUCTION 

In natural mudflows, the interstitial fluid made of clay and water plays a major role in the 

rheological behaviour of the complete material. Since clay-water suspensions have often been 

considered as thixotropic yield stress fluids, it is likely that thixotropy plays a role in some 

cases of natural events. Thixotropy is the characteristic of a fluid to form a gelled structure 

over time when it is not subjected to shearing and to liquefy when agitated. A thixotropic fluid 

appears as a non-Newtonian fluid exhibiting an apparent yield stress and an apparent viscosity 

that are functions of both the shear intensity and the current state(s) of structure of the 

material. Under constant shear rate, the apparent viscosity of a thixotropic fluid changes with 

time until reaching equilibrium. To date, it is essentially the yielding character of non-

Newtonian fluid behaviour which has been taken into account for modelling either steady, 

slow spreading and rapid transient free surface flows (Liu and Mei 1989, Coussot 1997, 

Laigle and Coussot 1997). There is a need to explore the interplay of the yielding and 

thixotropic characters of mud and debris flows. 

This work describes a basic study of dam break wave with thixotropic fluid. Such a highly 

unsteady flow motion has not been studied to date with thixotropic fluid, despite its practical 

applications : e.g., mudflow release, concrete tests including L-Box and J-Ring for self-

consolidating concrete testing, preparation of industrial paints. Herein a theoretical analysis is 
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developed. One-dimensional equations are developed yielding analytical solutions of the 

problem, and results are discussed. It is the purpose of this paper to fill a void in this field, to 

compare theoretical developments with physical modelling results, and to present new 

compelling conclusions regarding highly unsteady flow motion of thixotropic fluids. 

 

1.1 FLUID RHEOLOGY 

For a Newtonian fluid, the shear stress acting in a direction is proportional to the velocity 

gradient ∂V/∂y  in the normal direction. The constant of proportionality is the dynamic 

viscosity. For some sediment-laden flows with large concentrations of fine particles, the 

Bingham plastic model is more appropriate (e.g. Wan and Wang 1994). For thixotropic fluids, 

various models have been proposed to describe their behaviour (e.g. Mewis 1979). Most have 

a similar structure consisting of an apparent viscosity function of the shear rate ∂V/∂y and of 

some structure parameter(s) associated with some kinetic equation(s) giving the time 

evolution of the structure parameter(s) as function(s) of time and shear rate. Coussot et al. 

(2002) proposed a simple model to describe the rheological properties of a thixotropic fluid: 

m  =  mo * (1 + ln)             (1) 

∂ l
∂t   =  

1

q
  -  a * 

∂V
∂y * l     (2) 

where µo, n, θ and α are four constant parameters for a given fluid, and µ is the apparent viscosity of 

the thixotropic fluid defined as µ = τ/∂V/∂y with τ being the shear stress, V the velocity and y the 

normal direction. Equations (1) and (2) imply that the degree of jamming of thixotropic fluid can be 

represented by a single parameter λ describing the instantaneous state of fluid structure. The degree of 

jamming of the fluid λ could represent the degree of flocculation of clays or the fraction of particles 

in potential wells for colloidal suspensions (Coussot et al. 2002). One advantage of this model is that 

flow simulations do not require the determination of a solid-liquid limit like other yield stress models. 

The model is capable to predict qualitatively the trends of fluid behaviours, as well as quantitative 

properties under steady and unsteady states (e.g. Roussel et al. 2004). 

 

2. THEORETICAL TREATMENT 

A dam break wave is the flow resulting from a sudden release of a mass of fluid in a 

channel (Fig. 1A). For a sloping wide rectangular channel, Hunt (1984) developed a complete 

kinematic wave solution of the Saint-Venant equations based upon the basic equations : 

∂ d
∂t   +  

∂ (V * d)

∂x   =  0                                                                          Continuity equation  (3) 

V  =  
8 * g

f
 * d * So                                                              Kinematic wave equation  (4) 

where d is the flow depth or fluid thickness measured normal to the invert, V is the depth-

average velocity, t is the time, x is the coordinate in the flow direction positive downstream, f 

is the Darcy friction factor and So is the bed slope (So = sinθb) (Fig. 1A). The combination of 

continuity and momentum equations may be rewritten as : 
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D d

Dt
  =  0                       (5) 

along the forward characteristic trajectory : 

d x

dt
  =  

3

2
 * 

8 * g

f
 * So * d     (6) 

where D/Dt characterises the absolute differentiation operator (Hunt 1984, Chanson 2004). 

The free-surface profile must further satisfy the conservation of mass : 

⌡⌠
x=-L 

 Xs

d * dx  =  
1

2
 * Hdam * L * cosqb  =  

1

2
 * do * L                                                              (7) 

where L is the reservoir length, Hdam is the dam height, do is the initial reservoir height 

measured normal to the chute invert and Xs is the wave front position (Fig. 1A). The dam 

removal is associated with the dam break wave propagation as well as a backward 

characteristic propagating upstream into the reservoir initially at rest. Since the propagation of 

the initial negative wave is relatively rapid, the complete equations of Saint Venant must be 

solved. The initial backward characteristic propagates in a fluid at rest (V = 0, Sf = 0) and its 

upstream extent is: 

x =  - 
1

4
 * g * So* t2                                                             Initial backward characteristic (8) 

where t is the time from dam removal. For a two-dimensional triangular reservoir, the initial 

backward characteristic reaches the reservoir upstream end at the time T = 4*L/(g*So). 
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(A) Definition sketch 
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(B) Sketch of characteristic curves for a dam break wave of thixotropic fluid 

Fig. 1 Dam break wave of thixotropic fluid 

 

Using the model of Coussot et al. (2002), the rheological equations (Eq. (1) and (2)) may be 

approximated by assuming ∂V/∂y ≈ V/d and τo = µ*V/d, where τo is the boundary shear stress and µ 

is the apparent fluid viscosity. The kinematic wave approximation (So = Sf) yields : 

V  =  
ρ * g * So * d

2

µo * (1 + λn
)

                                                                     Kinematic wave approximation  (9) 

Along a characteristic trajectory, the degree of jamming of the material satisfies : 

d λ
dt

  =  
1

θ  -  α * 
ρ * g * d * So

µo
 * 

λ

1 + λn
                                                                                           (10) 

with d = constant along the forward characteristic. Combining Equations (6) and (9), the equation of 

the forward characteristic trajectory becomes: 

d x

dt
  =  

3

2
 * 
ρ * g * So * d

2

µo * (1 + λn
)

                                                         Forward characteristic trajectory  (11) 

The characteristic trajectories are not straight lines since λ is a function of time and space 

(Fig. 1B). 

 

2.1 DISCUSSION 

Several analytical developments may be derived in particular cases, including for θ → +∞ or for 

integer values of n (App. I). More generally, for n > 1, Equation (10) predicts different behaviours 

along a forward characteristic depending upon the sign of dλ/dt and the initial degree of jamming 

λ(t=0) = λo. It may be rewritten as : 

d λ
dt

  =  F2(λ)                                                                                                                                  (10b) 

Note that the function λ/(1+λn) tends to zero for λ → 0 and λ → +∞, and it has a maximum for λ = 

λc = (n-1)-1/n. Hence the equation F2(λ) = 0 has zero real solution, one solution λc or two solutions 

λ1 and λ2 depending upon the dimensionless viscosity µo/(θ*α*ρ*g*d*So). The function F2(λ) is 
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positive for λ → 0 and λ → +∞. It is negative for λ1 < λ <  λ2 when the equation F2(λ) = 0 has two 

real solutions. 

For a dam break down a sloping channel, Equation (10) gives at the time origin (t = 0) : 





d λ

dt
t=0

  =  α * 
ρ * g * d * So

µo
 * 







µo

θ * α * ρ * g * d * So
  -  

λo

1 + λo
n

                                           (12) 

along the forward characteristic where d is constant and λo is the initial degree of fluid jamming. 

When the term inside the brackets (right handside, Eq. (12)) is positive (Case 1), λ(t>0) > λo, and, by 

extension, λ increases monotically towards the wave front. For large times (t >>1), dλ/dt tends to 1/θ 

and the degree of jamming λ tends to an infinite value : i.e., complete stoppage. The result is 

independent of the initial degree of jamming λo. A similar reasoning may be developed when the term 

inside the brackets (right handside, Eq. (12)) is negative (Case 2), with three basic flow situations 

depending upon the signs of (λo - λ1) and (λo - λ2). For (λo > λ2 > λ1), dλ/dt is positive for t ≥ 0 

everywhere along the characteristic trajectory and λ increases monotically until complete flow 

stoppage. For (λ1 < λo < λ2), dλ/dt ≤ 0 at t ≥ 0, although dλ/dt tends to zero and λ tends to λ1 for 

large times (t >> 1). Along a forward characteristic, the fluid flow tends to a constant viscosity 

behaviour (µ = µo*(1+λ1
n)). For (λo < λ1 < λ2), dλ/dt ≥ 0 at t ≥ 0. dλ/dt tends to zero and λ tends to 

λ1 for large times (t >> 1). The fluid flow tends again to a constant viscosity fluid behaviour 

(µo*(1+λ1
n)). 

 

3. APPLICATION TO DAM BREAK AND AVALANCHE 

Although the above discussion was developed along a forward characteristic on which the flow 

depth was constant, it may be extended to the sudden dam break of a finite volume reservoir. 

Considering a series of characteristics issued from the initial negative characteristic, the flow depth d 

is constant on each forward characteristic and it must satisfy : 0 ≤ d ≤ do (Fig. 1B). Three flow 

situations may occur depending upon the initial degree of fluid jamming λo and the ratio do/hc where 

do is the initial reservoir thickness at the dam and hc is a critical fluid thickness below which the fluid 

flow motion tends to complete stoppage : 

hc  =  
µo * (n - 1)

1/n

θ * α * ρ * g * So
                                                                                                                  (13) 

For d < hc, λ increases monotically along a forward characteristic until fluid stoppage. 

Case (a) : For reservoir depths less than the characteristic fluid thickness (i.e. do < hc), the degree 

of jamming of the fluid increases monotically with time on each forward characteristic until fluid 

stoppage. The extent of fluid flow is limited and the flow motion is relatively slow until complete 

stoppage. The result is independent of the initial degree of fluid jamming λo. 

Case (b) : For larger initial reservoirs (i.e. do > hc), each characteristic may have a different 

behaviour from adjacent characteristics depending upon the signs of (λo-λ1) and (λo-λ2). Typical 

trends are illustrated in Fig. 2, showing time-variations of dimensionless effective viscosity along a 

forward characteristic. Following the initial backward characteristic, the flow depth satisfies hc < d < 

do for 0 < t < tc and 0 < d < hc for tc < t < T where T is the time taken by the initial characteristic to 

reach the reservoir upstream end. On each characteristic issued from the initial negative characteristic 
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at t > tc, the flow depth d is less than the characteristic fluid thickness hc. The degree of fluid 

jamming λ increases monotically, the flow motion is relatively slow and the extent of fluid flow is 

limited until complete stoppage. For λo > λ2, λ and µ increase monotically along all forward 

characteristics until complete stoppage (Case b1). The extent of flow motion is moderate until fluid 

stoppage. For λ1 < λo < λ2 (Case b2), the fluid flow tends to a constant viscosity behaviour (µ = 

µo*(1+λ1
n)) with increasing time towards the wave front (Fig. 2). That is, the flow tends to a rapid 

motion towards the wave front. Similarly, for λo < λ1 (Case b3), the fluid flow tends to a constant 

viscosity or fast motion (µ = µo*(1+λ1
n)) towards the shock on the forward characteristics. Basically, 

Cases b2 and b3 tend to relatively similar flow conditions. 

Case (c) : For very large initial reservoirs (i.e. do >> hc) and an initial degree of jamming λo such 

as λo << λ2, the fluid flows as a quasi-constant viscosity wave motion. The flow motion is relatively 

rapid and it will stop only when the fluid thickness becomes less than the characteristic fluid 

thickness hc. The maximum extent of the wave front may be deduced from the equation of 

conservation of mass. Assuming that complete stoppage occurs for d = hc and that the final fluid 

thickness remains hc, the continuity equation yields the final wave front position (Xs)end: 

(Xs)end  =  
1

2
 * 
θ * α * ρ * g * So * do * L

µo * (n - 1)
1/n

                                                                                     (14) 

Equation (14) is a crude approximation assuming a two-dimensional flow. But its 

qualitative trends are coherent with both fluid rheological properties and flow motion 

equations. 

 

t

1

Complete
fluid stoppage

Case b1

Case b2

Case b3

µ

µ  (1+λ   )o o
n

 

Fig. 2 Variations of dimensionless effective viscosity with increasing time along forward 

characteristics in a dam break wave down a sloping channel (do > hc) 

 

4. COMPARISON BETWEEN EXPERIMENTS AND THEORETICAL  

CALCULATIONS 

Experiments were conducted systematically in two facilities with bentonite suspensions, 

using various masses of fluid M, bentonite mass concentrations Cm and rest times To 

(Chanson et al. 2004). Photographs of experiments are presented in Figure 3 and Table 1 

summarises the investigated flow conditions. The results demonstrated four basic fluid flow 

patterns for the range of investigated flow conditions, although the present classification 

might be different on longer flumes. For small bentonite mass concentrations (Cm ≤ 0.15) and 
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short relaxation times (To ≤ 30 s), the fluid flowed rapidly down the constant-slope plate and 

it spilled into the overflow container (Type I). During the initial instants immediately 

following gate opening (t* g/do < 4.1), the flow was subjected to a very-rapid acceleration 

over a short period. Inertial effects were dominant leading to some form of two-dimensional 

"orifice" flow motion. Afterwards, the fluid flowed rapidly down the inclined chute, the flow 

became three-dimensional and the suspension appeared to have a very low viscosity. For 

intermediate concentrations and rest periods, the suspension flowed rapidly initially, as 

described above, decelerated relatively suddenly, continued to flow slowly for sometimes and 

later the flow stopped, often before the plate downstream end (Type II). Observations 

suggested three distinct flow periods. Immediately after gate opening, the fluid was rapidly 

accelerated. The flow out of the gate was quasi-two-dimensional and somehow similar to a 

sudden orifice flow. Then the suspension continued to flow rapidly although sidewall effects 

started to develop. The latter were associated with a slower front propagation at and next to 

the walls. Later the fluid decelerated relatively rapidly, and this was followed by a significant 

period of time during which the suspension continued to flow slowly before stopping 

ultimately. In view in elevation, the front exhibited a distinctive quasi-parabolic shape centred 

around the channel centreline. After stoppage, the fluid had a relatively uniform constant 

thickness but near the upstream end of the tail (Fig. 3A & 3B). For large mass concentrations 

and long rest periods, the mass of fluid stretched very-slowly down the slope, until the head 

separated from the tail (Type III, Fig. 3C). After separation, a thin film of suspension 

connected the head and tail volumes which could eventually break for long travelling distance 

of the head. The head had a crescent ("croissant") shape. For long rest periods (i.e. several 

hours), several successive packets were sometimes observed (Type IIIb). The last flow pattern 

(Type IV) corresponded to an absence of flow. Sometimes, a slight deformation of the 

reservoir, with some cracks, were observed. 

Experiments showed that the conditions for the transition between flow regimes were 

functions of the mass concentration of bentonite suspension Cm, rest time To and initial mass 

of fluid M. A summary of observations is shown in Figure 4 for a fixed mass M. Basically the 

type of flow regime changed from no flow (Type IV) to a rapid flow (Type I) with increasing 

mass M, decreasing mass concentration Cm and decreasing rest period To. Figure 4 illustrates 

the trend in terms of mass concentration and rest period for a given mass of fluid and constant 

channel slope. 

Theoretical fluid motion and rheology considerations yield a characteristic fluid thickness 

hc below which the fluid flow motion tends to complete stoppage (Eq. (13)) and final wave 

front position (Xs)end (Eq. (14)). A comparison with experimental observations of final front 

locations and fluid thicknesses provides some estimate for the rheological parameters. 

Although the product θ*α may be estimated using either Equations (13) or (14), comparisons 

with experiments gave similar results. Results are summarised in Table 2 and show that the 

product θ*α must decrease with increasing mass concentration, thus increasing minimum 

apparent yield stress. 
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5. DISCUSSION 

The physical observations of flow regimes were in remarkable agreement with theoretical 

considerations. In particular, exactly the same flow regimes were identified as well as same 

trends for the effects of the bentonite concentration and rest time. For example, theoretical 

considerations predict an intermediate motion with initially rapid before final fluid stoppage 

for intermediate mass of fluid M (i.e. do/hc > 1) and intermediate initial rest period To. The 

theory predicts a faster flow stoppage with increasing rest period. Similarly, it shows that an 

increase in bentonite mass concentration, associated with an increase in the product (θ*α), 

yields a faster fluid stoppage with a larger final fluid thickness. A similar comparison between 

theory and physical experiments may be developed for fast-flowing motion and relatively-

rapid flow stoppage situations. This qualitative agreement between simple theory and reality 

means that the basic physical ingredients of the rheological model and kinematic wave 

equations are likely to be at the origin of the observed phenomena. Interestingly the Flow 

Type III is the only flow pattern not predicted by theoretical considerations. It is believed that 

this reflects simply the limitations of the Saint-Venant equations (1D flow equations) and of 

the kinematic wave approximation that implies a free-surface parallel to the chute invert, 

hence incompatible with the Type III free-surface pattern (e.g. Fig. 3C). 
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Fig. 3 Experiment with bentonite suspension (Photographs taken after fluid stoppage) - (A, 

Top) Flow type II, Cm = 0.15, rest period: To = 60 s (B, Middle) Flow type II, Cm = 

0.15, To = 60 s, view in elevation (C, Bottom) Flow type III, Cm = 0.15, rest period: 

To = 2400 s, sideview of the head packet 
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Fig. 4 Flow regime chart - Rest time To as function of mass concentration Cm for a given 

mass of fluid (M = 3.7 kg) and fixed slope (b = 15º) 

 

Table 1. Summary of experimental flow conditions with bentonite suspensions 

Facility Slope qb 

(º) 

Mass 

concentration 

Cm 

Initial 

mass M 

(kg) 

Rest 

period To 

(s) 

Remarks 

(1) (2) (3) (4) (5) (6) 

Large flume 15.0 0.10, 0.13, 

0.15, 0.17 & 

0.20 

1.6 to 4.1 20 sec. to 

23 hours 

Two-dimensional triangular 

reservoir. Chute length : 2.0 m. 

Chute width: 0.340 m. 

Small plate 15.4 to 

24 

0.05 to 0.20 0.2 to 0.5 0 to 30 

min. 

Cylindrical and square moulds. 

Plate size: 0.8 m by 0.48 m. 

 

Table 2. Comparison between final fluid thickness and wave front position data, and 

Equations (14) and (15) with bentonite suspensions (b = 15º) - Values of n and 

*  for best data fit   

Cm  o n *  Remarks 

 kg/m3 Pa.s  s  

(1) (2) (3) (4) (5) (4) 

0.10 1064 0.34 1.1 0.014 2 experiments (Flow types I & II). 

0.13 1085 0.34 1.1 0.0032 7 experiments (Flow types I, II & III). 

0.15 1100 0.34 1.1 0.0017 5 experiments (Flow types II & III). 

 

Equations (10) and (11) may be further integrated numerically to predict time-variations of 

dam break wave profile, while the instantaneous locations Xs and celerity Cs of the shock 

front. are derived from the continuity equation (Eq. (7)). Typical results are presented in Fig. 5. 

Qualitatively and quantitatively, numerical calculations were in agreement with experimental 
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observations, but for the instants after dam removal (i.e. t* g/do < 5). Hunt (1984) showed 

that, for turbulent flows, the kinematic wave approximation was valid after the wave front 

travelled approximately four reservoir lengths downstream of the gate : i.e., Xs/L > 4. The 

assumption is not valid in the initial instants after dam break nor until the free-surface 

becomes parallel to the chute invert. Hunt commented however: "it is possible that an 

approach similar [...] could be used to route the flood downstream and that the result might be 

valid even for relatively small distance downstream". With thixotropic fluids, a comparison 

between experiments and calculations suggested that the kinematic wave approximation 

seemed reasonable once the wave front travelled approximately one to two reservoir lengths 

downstream of the gate : i.e., Xs/L > 1 to 2. 

 

t.sqrt(g/do)

X
s/
d
o
, 
C

s/
sq
rt
(g
.d

o
)

d
s/
d
o
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Fig. 5 Numerical calculations of dam break wave of thixotropic fluid for M = 3.8 kg,  

=1099 kg/m3, µo = 0.34, θ = 1, θ*α = 0.0017, n = 1.1, λo = 0.1 - Dimensionless wave front 

location Xs/do, celerity Cs/ g*do and thickness ds/do 

 

6. CONCLUSION 

A basic study of dam break wave with thixotropic fluid is presented. Practical applications 

include self-flowing concretes, industrial paints, mud and debris flows. Theoretical 

considerations were developed based upon a kinematic wave approximation of the Saint-

Venant equations down a prismatic sloping channel and combined with the thixotropic 

rheological model of Coussot et al. (2002). Theoretical results highlight three different flow 

regimes depedning upon the initial degree of fluid jamming o and upon the ratio do/hc. 

These flow regimes are: (1) a relatively-rapid flow stoppage for relatively small mass of fluid 

(do/hc < 1) or large initial rest period To (i.e. large o) (Cases A and B1), (2) a fast flow 

motion for large mass of fluid (do/hc >> 1) (Case C), and (3) an intermediate motion initially 

rapid before final fluid stoppage for intermediate mass of fluid (do/hc > 1) and intermediate 

initial rest period To (i.e. intermediate o) (Cases B2 and B3). The qualitative agreement 

between the present theory and the experiments of Chanson et al. (2004) suggests that the 
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basic equations of this development (i.e. kinematic wave equation and rheology model) are 

likely to model correctly both fluid behaviour and flow motion. 

 

7. APPENDIX I - ANALYTICAL SOLUTIONS OF THE METHOD OF 

CHARACTERISTICS TO DAM BREAK WAVE OF THIXOTROPIC FLUID 

Assuming that the fluid viscosity tends to zero for infinitely high shear rate (i.e. µ = µo*λn
), 

Equation (10) predicts that the degree of jamming λ increases monotically for λo > λc where λo is the 

initial degree of jamming and  λc is a characteristic degree of jamming of the fluid defined as : 

λc  =  








θ * α * 
ρ * g * d * So

µo

1/(n - 1)

                                                                                                           (I-1) 

Physically, for λo > λc, the fluid viscosity increases with increasing time along the trajectory 

towards the shock. Since λ and µ increase toward the wave front, the flow resistance increases and the 

velocity decreases. Conversely λ decreases monotically along the forward characteristic trajectory for 

λo < λc. In summary, along a forward characteristic trajectory, the fluid evolves either towards 

complete stoppage for λ > λc, or towards a quasi-steady flow motion (λ < λc) in which the flow 

resistance counter-balances exactly the gravity force component in the flow direction. (Note however 

that the flow resistance tends to zero, since the viscosity is zero (i.e. ideal fluid) for λ = 0.) The theory 

was extended to a complete dam break problem by Chanson et al. (2004). 

More generally, Equation (10) may be solved analytically for integer values of n. For n = 1, the 

analytical solution of Equation (10) is: 
t

θ = λ + a*λ*(Ln((a-1)*λ - 1) - Lnθ) - (λo + a*λo*(Ln((a-1)*λo - 1) - Lnθ))                                                 (I-2) 

where : a = α*ρ*g*d*So*θ/µo must be positive and greater than unity. For n = 2, the analytical 

solution of Equation (10) is: 

t = θ*λ + α*
ρ*g*d*So*λ

µo
 * 

ArcTan









λ

1 - α*
ρ*g*d*So

µo
*θ*λ

1

θ4
 - α*

ρ*g*d*So

µo
*λ

  -  to                                                         (I-3) 

where ArcTan is the inverse tangent function and to is a characteristic time. Further analytical 

solutions may be obtained for positive integer values of n assuming that all other parameters, but λ, 

are independent of x and t. 
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