
Numerical Limitations of Hydraulic Models 

L. Toombes1 and H. Chanson2 
1Aurecon Australia Pty Ltd 

32 Turbot Street Brisbane QLD 4004 
AUSTRALIA 

2The University of Queensland, School of Civil Engineering 
Brisbane QLD 4072 

AUSTRALIA 
Email: ToombesL@ap.aurecongroup.com  

 
Abstract:  Fluid motion is controlled by the basic principles of conservation of mass, energy and 
momentum, which form the basis of fluid mechanics and hydraulic engineering.  Complex flow 
situations must be solved using empirical approximations and numerical models, which are based on 
derivations of the basic principles (backwater equation, Navier-Stokes equation etc).  All numerical 
models are required to make some form of approximation to solve these principles, and consequently 
all have their limitations.  Sadly, these limitations are usually neither advertised by the software 
developers, nor investigated and understood by the users.  The consequences of misusing a model 
can be catastrophic. This paper presents a brief explanation of the backwater and Navier-Stokes 
equations, and examines the use of these equations in the context of several leading software 
packages.  The major assumptions and approximations implicit in both the base equations and 
numerical models are identified, together with the limitations that these impose.  The validity of the 
numerical models is then examined in a number of situations, including verification of the model 
predictions against physical model data. 
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1. INTRODUCTION 

Fluid motion is controlled by three basic principles: conservation of mass, energy and momentum.  
Derivatives of these principles are commonly known as the continuity, energy and momentum 
equations.  These principles are among the first taught in basic fluid mechanics, and they form the 
foundation of the field of hydraulic engineering.  However, as situations become increasingly complex, 
we lose track of these essential principles.  Basic equations are replaced by empirical approximations, 
and mathematical calculations with numerical models.  These are an essential part of a professional 
engineer’s life.  Determining an equivalent surface roughness of a floodplain is far more difficult than 
estimating an equivalent roughness height or a Manning’s roughness coefficient; solving a backwater 
equation for an irregular channel would be an arduous task without the assistance of a numerical 
model.  While the advantages of numerical models cannot be ignored, we run the risk of becoming 
mindless automatons, plugging raw data into our numerical models and blindly accepting the results 
that they produce. 
 
Numerical models come in a wide range of shapes and flavours – one, two or three dimensions, 
steady or unsteady flow conditions etc.  All are based on derivations of the basic principles.  All are 
required to make some form of numerical approximation to solve these principles.  All have their 
limitations.  Unfortunately, software developers are usually reluctant to advertise the limitations of their 
products. Engineers are often remiss in their duties to understand the capability of the software they 
use and to validate the results they produce.  The use of a model in a manner for which it was not 
designed, or that contravenes the approximations upon which it was based, can lead to gross errors in 
the model predictions.  The consequences may lie anywhere between negligible and catastrophic, 
potentially leading to property damage and loss of life.  The objective of this paper is to promote a 
basic awareness of how numerical models operate and to draw attention to some of the more 
common limitations that are implicit to this operation, in the hope that this may encourage these 
models to be used in (and only in) the manner for which they are intended. 
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2. FLUID MECHANICS 101 

Fluid mechanics is the study of fluids at rest (statics) or in motion (dynamics), including the interaction 
between the fluid and its surroundings.  As a branch of mechanics, fluid flow is governed by well 
known and understood basic principles.  However, application of these principles is far easier in theory 
than in practice due to the complexity of fluid flow, including both the geometry and the properties of 
the fluid itself (viscosity, compressibility, surface tension etc.).  It is therefore necessary to make 
assumptions that simplify the application of the controlling equations, and use numerical modelling 
techniques to obtain solutions of complex problems. The principles of fluid mechanics can be found in 
many textbooks (e.g. Henderson 1966, Liggett 1994), and it is not the intention of this paper to cover 
them in any great detail.  Simple descriptions of the basic concepts and some of the more common 
simplifications, necessary for understanding how these principles are used by numerical modelling 
software, are nevertheless provided in the sections below. 

2.1. Basic Principles of Fluid Mechanics 

The mechanics of fluid flow is governed by three basic principles of conservation: 
 
Mass – The Lomonosov-Lavoisier law states that the mass of a closed system (a system into which 
there is no inflow or outflow) remains constant, regardless of the processes acting inside the system. 
An equivalent statement is that matter cannot be created or destroyed, although it may be rearranged.  
If a system is open then the rate of increase in the mass within the control volume is equal to the 
cumulative mass flowrate into the control volume: 
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where m&  is the mass flowrate across the control surface, M is the mass within the control volume and 
t is time.  If the fluid is incompressible (constant density) then the equation can be simplified by 
replacing mass with volume.  For steady-state conditions, this further simplifies to Q = constant. 
 
Momentum – Newton’s second law states that the rate of change of momentum of a body is 
proportional to the resultant force acting on the body and is in the same direction.  For a control 
volume, this may be written in differential vector format as: 
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where F  is the force (vector) acting on the control volume and V  is the velocity (vector) of the control 
volume.  For a Newtonian fluid and assuming constant density (ρ) and viscosity (μ), the equation of 
motion may be written in the x-direction as: 
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where Vx, Vy and Vz are the velocity components in the x, y and z directions, P is the pressure and gx 
is the resultant of the gravitational acceleration (or other volume forces) in the x-direction.  Similar 
equations derived for the y and z directions are collectively known as the Navier-Stokes equations. 
 
Energy – The first law of thermodynamics states that the net energy supplied to a system is equal to 
the increase in energy of the system and the energy that leaves the system as work is done:   
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where E is the energy, Qh is the heat added to the system and W is the work done by the system.  The 
energy of the system is the sum of the potential (gz), kinetic (V²/2) and internal energy. The 
‘Backwater Equation’ is a derivative of the Energy Equation for steady flow along a streamline: 
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where H is the total head (often simplified as H = P/ρg + z + V²/2g), s is the distance along a 
streamline, Sf is the friction slope, f is the Darcy friction factor, and DH is the hydraulic diameter.   
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2.2. Numerical Models 

Computational fluid dynamics (CFD) can be defined as a branch of fluid mechanics that uses 
numerical methods and algorithms to solve and analyse problems involving fluid flows.  The term 
“CFD model” is commonly used to refer to a high-order numerical model capable of solving complex 
flow situations with relatively few simplifications (eg three-dimensional, multi-fluid, compressible, 
thermodynamic effects etc.).  In reality, all numerical models are CFD models (even a simple 
spreadsheet solution of the backwater equation).  There are generally considered to be two methods 
of analysing fluid motion: by describing the detailed flow pattern at every point in the flow field (small 
scale or differential analysis), or by examining a finite region and determining the gross effects of and 
on the region (finite or control-volume analysis).  Since they are generally concerned with describing 
or determining the fluid properties within space, most numerical models adopt a control-volume 
approach.   
 
The complexity of real fluid flow makes it impossible to solve the governing equations without making 
some form of simplifying approximation, even with the use of complex models and fast computers.  
Common practices include: (a) simplification of the spatial and geometric properties (e.g. solution of 
the flow field in only one or two dimensions, assumption of cross-section average or depth-average 
properties), (b) assumption of steady or quasi-steady flow conditions (independent of time), (c) neglect 
of fluid properties that would have negligible influence in the circumstances being investigated (e.g. 
constant density and temperature, no viscosity or surface tension), and (d) use of empirical formulae 
to approximate flow characteristics (e.g. Manning’s equation, k-ε turbulence model).   
 
Hydraulic models may be categorized by the spatial and temporal simplifications that the model 
employs.  Each category has associated with it a number of fluid property and dynamic assumptions 
(although there are always exceptions to the rule).  The following sections aim to outline some of the 
more common categories, the assumptions typically associated with these categories, and the 
limitations that these impose.   

3. ONE-DIMENSIONAL MODELLING 

As the name implies, one-dimensional models assume that the flow is in one direction only, and there 
is no direct modelling of changes in flow distribution, cross-section shape, flow direction, or other two- 
and three-dimensional properties of the flow.  The channel geometry is typically represented as a 
series of cross-sections at fixed (but not necessarily uniform) intervals.  Although often considered to 
be relatively simplistic by modern standards, one-dimensional modelling remains a useful and valid 
tool in many situations. One-dimensional hydraulic models may be categorized as steady or unsteady.  
While these appear, superficially, to be similar and share many of the same limitations, the basic 
hydraulic principles to numerically solve these two situations are very different.  Steady-state 
numerical models are in most cases based on a derivative of the 'backwater' (or Energy) equation, 
while unsteady models are based on a derivative of the Saint Venant (or Momentum) equation.  Each 
solution has its advantages and disadvantages, and neither is appropriate in all situations.  The 
derivation and implicit limitations of these solutions are described in the sections below.   

3.1. Generic Assumptions Common to One-Dimensional Modelling 

One-dimensional models make a number of approximations in line with their simplistic nature.  Some 
are so obvious that they (hopefully) cannot be missed, while others are not so well recognised.  Flow 
properties must be calculated based on characteristic properties of the cross-section (eg hydraulic 
diameter, average velocity).  Some software packages try to provide greater flexibility by dividing each 
cross-section into sub-areas (such as the main channel, left and right overbanks), then applying 
various weighting factors to the flow distribution between the sub-areas and the travel distance of each 
component.  More complex software packages can simulate quasi-2D situations as a series of inter-
linked channels, however the definition of flow path and length is inflexible.  Even with these abilities, 
one-dimensional modeling is only appropriate for modelling well-defined and constant flowpaths; the 
model cannot match the flexibility of two- and three-dimensional modelling necessary for representing 
complex channel/floodplain interactions. 
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A less obvious simplification common to many numerical 
models (eg HEC-RAS, MIKE 11) is to assume that the grade 
of the channel is small, nominally less than 1:10, and 
therefore the sine and cosine of the channel slope can be 
assumed equal to zero and unity respectively, allowing the 
cos θ term to be neglected from the calculation of hydrostatic 
pressure (P = ρgd cos θ) and elevation (z = z0 + d cos θ) 
shown in Figure 1.  This also allows numerous geometric 
implications may be ignored; was the cross-section originally 
defined vertically or perpendicular to the invert, and are the 
water level results projected vertically (d/cos θ) or 
perpendicular to the invert (d cos θ)? 
 
Rather than using a physically derived coefficient, such as the Darcy friction factor f, most numerical 
models estimate friction losses using an empirical approximation such as Manning’s coefficient.  While 
Manning’s equation has been in use for over 120 years, it is perhaps this universal acceptance that 
has lead to evident ignorance about the limitations of the equation.  A popular misconception is that 
Manning’s roughness coefficient is a dimensionless constant, whereas in reality it has units (s/m1/3) 
and is dependent upon the hydraulic radius.  Care must therefore be taken, not only in the estimation 
of appropriate roughness coefficients, but to realise that although a model has been calibrated for one 
particular discharge, the performance may be different for other flow conditions.  Additionally, because 
there is no direct modelling of two- and three-dimensional flow effects, the roughness coefficient must 
account for the contribution of these aspects to hydraulic losses in the channel. 

3.2. The Backwater Equation and Steady-State One-Dimensional Modelling 

Numerical models usually solve the backwater equation between adjacent cross-sections using an 
iterative procedure called the standard step method, where the backwater equation is integrated as:   
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where the losses are separated into friction and contraction/expansion losses with Sf a representative 
friction slope between the two sections, L is the distance between the sections (which may be 
weighted, see Section 3.1), C is a contraction or expansion coefficient, d is the flow depth, z0 is the 
invert level, and α is a velocity weighting coefficient.   
 
The primary assumption of the integrated backwater equation used in steady-state numerical 
modelling is that the flow is gradually varied (Henderson 1966).  This implies that changes along the 
channel, such as cross-section shape, invert level, flow depth and pressure distribution, are relatively 
small over short distances.  The backwater equation has questionable or no accuracy in: (a) areas of 
rapid acceleration or deceleration, where the assumption of a hydrostatic pressure distribution is no 
longer valid, (b) areas of large turbulence and/or energy loss, and (c) areas of large change in cross-
section property where the assumption that the representative friction slope and contraction/expansion 
losses can be estimated by some combination of the section properties at each end. 

3.3. The Saint Venant Equation and Unsteady One-Dimensional Modelling 

Unlike steady-state modelling, which uses a solution of the continuity and energy equations, unsteady 
modelling is based on a solution of the continuity and momentum equations.  The derivation of these 
equations into a format suitable for one-dimensional modeling is complex but fairly well documented 
(e.g. Liggett 1975, Henderson 1966, reference manuals of HEC-RAS and MIKE 11).  The vertically 
integrated equations of continuity and momentum, commonly known as the Saint Venant equations, 
may be presented as: 
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where Q is the discharge, q is the lateral inflow (per unit length), A is the flow area, z is the free-
surface elevation and V is the velocity. 
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Figure 1  Level/Depth Definitions 
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While the backwater equation is based on a steady-state differential form of the Energy equation, the 
Saint Venant equation based solutions can model unsteady flow conditions.  Many software packages, 
including HEC-RAS (unsteady solver) and MIKE 11, adopt an algorithm that cannot accommodate two 
boundary conditions at the same boundary.  As a consequence they cannot model supercritical flow, 
for which both discharge and water level are controlled by the upstream boundary.  Instead, 
supercritical flow conditions are ‘solved’ by suppressing the convective acceleration as the Froude 
number increases.  Earlier software such as RUBICON and ESTRY simply failed if supercritical 
conditions where encountered.  The implications of this are discussed further in Section 6.2. 

4. TWO-DIMENSIONAL MODELLING 

Two-dimensional hydraulic models are commonly used for modelling of floodplains, coastal and 
marine situations where the flow path is poorly defined.  Two-dimensional models calculate water 
depths and velocities across a grid or mesh that defines the topographic information.  Traditionally, the 
mesh has been a fixed-space rectilinear grid with the governing equations solved using implicit finite-
difference techniques.  More recent models have allowed for a flexible mesh (typically consisting of 
triangles or quadrilaterals) solved using finite-element methods, which have significantly greater ability 
to handle complex geometries and boundaries at the expense of increased numerical complexity. 
 
The numerical solution used by two-dimensional hydraulic models is usually based on the Saint 
Venant equations, which are derived from the depth-integrated conservation of mass and Navier-
Stokes equations (Eq. (1) and (3) respectively).  The Saint Venant equations are also commonly 
known as the shallow water equations, and are based on the assumption that the horizontal length 
scale is significantly greater than the vertical scale, implying that vertical velocities are negligible, 
vertical pressure gradients are hydrostatic, and horizontal pressure gradients are due to displacement 
of the free surface. 
 
Unlike the algorithms used by one-dimensional models, two-dimensional models can often model both 
subcritical and supercritical flow conditions (see Section 6), although the user is advised to confirm 
this for any particular software package.  For example, MIKE 21 by DHI Software requires at least two 
grid cells in the direction of flow to correctly resolve transition from sub- to supercritical flow at a 
control such as a weir (McCowan et al 2001). 
 
In addition to the base assumptions of the Saint Venant equations discussed above, additional 
limitations are imposed by the formulations used to estimate the forces acting on each fluid 
component, such as viscous shear stresses and bed friction.  Viscosity calculations in particular can 
be particularly vulnerable to ‘water column’ effects when the vertical length scale approaches or 
exceeds the horizontal scale.  Figure 2(b) shows an example of the significant breakdown in shear 
stress calculations that can occur when the flow depth (5m) significantly exceeds the grid size (2m).  
While often based on a Manning’s roughness, the implementation of bed friction within a two-
dimensional model is different from a one-dimensional model. For example roughness is only included 
on the plan of the grid and not the walls, and the macro-scale effects of changes of channel shape and 
direction do not need to be accounted for by the roughness. It should be remembered that the 
Manning’s roughness coefficient was developed for one-dimensional flow motion only. 
 

       
Figure 2  Velocity at a tunnel outlet with water depth ≈5m for (a) 5m grid, and (b) 2m grid 
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5. THREE-DIMENSIONAL AND HIGHER-ORDER MODELLING 

Many of the limitations imposed by or on two-dimensional models are related to the assumptions they 
make in relation to depth, such as the hydrostatic pressure distribution or shear forces.  Three-
dimensional modelling should therefore theoretically remove many of these limitations, although it 
does so at the expense of increasing the complexity of the numerical computations by an order or 
several orders of magnitude.  Models vary widely in terms of complexity and capability, from simply 
including another dimension into the Saint Venant equations to full “CFD Models” capable of modelling 
compressible fluids, multi-phase flow, thermodynamic effects and beyond.  As such, it is difficult to 
generalise a specific set of limitations that apply to high-order models.  It is nevertheless important to 
recognize that these limitations still exist regardless of how sophisticated the model may appear.  
Even with the great advancement in numerical modelling capability that has occurred in recent times, 
if the outcome is considered to be of importance or risk (e.g. dam spillways) it is still common practice 
to verify the numerical modelling results through the tried and tested means of physical modelling. 

6. COMPARISON WITH PHYSICAL MODELLING 

The capability and limitations of the various software packages listed in Table 1 were tested by 
comparing the model predictions with the results of two simple physical model experiments.  The 
physical modelling was undertaken at the University of Queensland.  
 

Table 1 – Summary of Software Tested Against Physical Models 

Software Version Publisher Category Capability 
HEC-RAS 4.0 United States Army Corps of Engineers One-Dimensional Steady (a) 
MIKE 11 2008 DHI Software One-Dimensional Unsteady 
MIKE 21 2008 DHI Software Two-Dimensional Unsteady 
FLOW-3D 9.2.1 Flow Science Inc. 3D CFD Unsteady 
Notes:  a  HEC-RAS has both steady-state (backwater equation) and unsteady (Saint Venant equation) modules.  The 

results and general characteristics of the unsteady solver are similar to MIKE 11.  For simplicity, only the MIKE 
11 unsteady results are discussed, and may be assumed to also apply to HEC-RAS Unsteady. 

6.1. Weir Experiment 

The weir experiment consisted of a 3.2m long, 0.25m wide flat channel with a streamlined weir located 
approximately 1m from the upstream end (Figure 3).  If the crest of the weir is ‘broad’ enough for the 
streamlines to become parallel to the weir crest, the pressure distribution will be approximately 
hydrostatic and the flow on the weir can be considered as gradually varied flow.  If the upstream head 
is large compared to the crest length, the flow across the weir will be rapidly varied.  Both conditions 
were examined on the physical model and compared with numerical model predictions.  The objective 
of this comparison was to examine the capability of the software in the gradually- and rapidly-varying 
flow conditions that occurred along the weir.  The model results are presented in Figure 3 and 
discussed below. 
 
HEC-RAS: The backwater equation is not valid for rapidly varied flow.  Nevertheless, HEC-RAS 
identifies that the weir acts as a hydraulic control and predicts that a transition from subcritical to 
supercritical flow occurs on the weir.  For the low-flow case, HEC-RAS achieves a good match of the 
flow across the weir, with only minor differences occurring in the rapidly-varying flow at the upstream 
and downstream end.  Significant differences are observed across the weir for the high-flow case, 
where the entire weir is rapidly varied flow.  The profiles upstream and downstream of the weir are 
nevertheless predicted with good accuracy. 
MIKE 11: Because of its numerical limitations, MIKE 11 cannot model the supercritical flow 
downstream of the weir.  For the low-flow case, the downstream water level is over-estimated by a 
factor of 8 (consider the implications of an underestimate of velocity by a factor of 8!).  This high 
tailwater impacts on the flow conditions on the weir, causing a significant error in the upstream water 
level.  The incorrect tailwater has less impact for the high-flow case.  There is still significant error in 
the predictions across the weir, but the upstream water level is almost correct.  Can this prediction 
really be trusted, or is it just luck? 
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MIKE 21: The numerical algorithms used by MIKE 21 allow it to achieve a good match of the flow 
across the weir.  Some differences are observed at the ends of the weir crest, particularly for the low 
flow case.  This is believed to be partly numerical limitation and partly due to the difficulty of 
representing a smooth transition with a fixed space grid (i.e. a physical limitation). 
FLOW-3D:  With the ability to model vertical velocity components, flow acceleration and non-
hydrostatic pressure, FLOW-3D achieves an excellent match of the physical model data. 
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Figure 3 – Weir Water Level Predictions of the Physical and Numerical Models 

6.2. Open Channel Flow Experiment 

The Open Channel Flow experiment apparatus was a 12 m long, 0.5m wide rectangular flume set with 
a slope of 1.6º.  Upstream and downstream water levels were controlled by a rounded gate, while 
constant inflow was provided by an upstream reservoir supplied from a constant-head tank.  Key 
objectives of the physical model were to demonstrate: (a) the basic principles of open channel flow 
and the backwater equation, (b) the control mechanisms (i.e. sub-critical from downstream and super-
critical from upstream), and (c) the transition from super-critical to sub-critical flow in the form of a 
hydraulic jump. Physical and numerical model results are shown in Figure 4 and discussed below. 
 
HEC-RAS: The HEC-RAS (steady-state) model prediction shows good agreement with the physical 
model measurements. The steady-state solution of the Backwater Equation in HEC-RAS can model 
both subcritical and supercritical flow.  HEC-RAS also identifies the occurrence of a hydraulic jump 
transition and predicts its location with reasonable accuracy.  The jump is modelled as an 
instantaneous transition between cross-sections, and there is no attempt to describe the length or 
strength of the jump. 
MIKE 11: As identified in Section 3.3, the solutions of the Saint Venant equation in both MIKE 11 and 
the unsteady solver of HEC-RAS are incapable of modelling supercritical flow.  Although able to match 
the subcritical flow measurements, significant disparity is observed in both the supercritical flow region 
and hydraulic jump.  While at first glance the result may appear conservative (i.e. predicted water 
levels higher than measured), this cannot be guaranteed in all circumstances.  Additionally, when 
water levels are over-predicted, velocities will be under-predicted, which could have potentially 
catastrophic consequences. 
MIKE 21: Although also based on the Saint Venant equation, the solution within MIKE 21 
demonstrates the ability to model both subcritical and supercritical flow with good accuracy (although 
a supercritical upstream boundary cannot be modelled, and defaults to critical depth).  The hydraulic 
jump is also modelled with reasonable accuracy.  The model lacks the capability to model the complex 
flow patterns within the hydraulic jump, and predictions in this region should be treated with caution. 
FLOW-3D: Considering the technological superiority of the FLOW-3D modelling package, it is just as 
well that the model prediction displays excellent agreement with the physical model.  The software can 
also model additional flow properties such as turbulence intensity and air entrainment. 
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Figure 4 – Open Channel Flow Water Level Predictions of the Physical and Numerical Models 

7. CONCLUSIONS 

The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of 
mass, energy and momentum.  Real-life situations are frequently too complex to solve without the aid 
of numerical models.  There is a tendency among some engineers to discard the basic principles 
taught at university and blindly assume that the results produced by the model are correct.  
Regardless of the complexity of models and despite the claims of their developers, all numerical 
models are required to make approximations.  These may be related to geometric limitations, 
numerical simplification (i.e. omission of ‘unimportant’ terms or fluid properties), or the use of empirical 
correlations.  Some are obvious: one-dimensional models must average properties over the two-
remaining directions, and two-dimensional models must assume depth-average flow properties.  It is 
the less obvious and poorly advertised approximations that pose the greatest threat to the novice user.  
Some of these, such as the inability of one-dimensional unsteady models to simulate supercritical 
flow, or the ‘water-column’ effects of two-dimensional models, can cause significant inaccuracy in the 
model predictions. 
 
A comparison of physical model and numerical model results confirmed that, if used in appropriate 
circumstances, numerical models can provide a good approximation of ‘reality’.  As soon as the 
software assumptions are violated however, the results of the model can no longer be trusted.  In 
some cases the differences may be fairly minor, but in other cases the numerical model can 
significantly over- or under-predict water levels and velocities.  The consequences of this are best left, 
and hopefully always left, to the imagination. Nevertheless, some advice can be provided to help avoid 
future problems. Firstly, it is recommended that anyone using any model should study carefully the 
documentation provided with the software, to fully appreciate what the model can do, and just as 
importantly, what it cannot do.  Secondly, the user should realize that even the most sophisticated 
model is still required to make simplifications and use empirical approximations in its calculations. 
Great care should be taken when pushing the model beyond what has been tried and tested.  Thirdly, 
even though sophisticated models can be applied to complex scenarios, it is important to remember 
that the basic principles of fluid mechanics still apply.  It is often possible to perform a ‘reality check’ to 
verify that the model results are at least of the correct order of magnitude.   
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