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In skimming flows down stepped chutes, the flow is nonaerated at
the upstream end. Free-surface instabilities are, however, ob-
served and strong air-water mixing occurs downstream of the in-
ception point of free-surface aeration (Fig. 1). Detailed air-water
flow measurements highlighted large amounts of entrained air and
the authors did well to document some air-water flow properties,
although they did not detail the air-water flow structure as did
some recent studies (Chanson and Toombes 2003: Yasuda and
Chanson 2003).

The discusser is very concerned by the inappropriate develop-
ment of the air entrainment inception point location. The authors’
analysis was based improperly upon the so-called “drawdown
equation.” That development is an integration of the backwater
equation, implying a fully developed boundary layer fow, and it
assumes d constant empirical Gauckler-Manning coefficient, As
illustrated in Fig. 1, the flow upstream of the inception point of
free-surface aeration is partially developed, and both backwater
and Gauckler-Manning equations are not valid (e.g., Henderson
1966; Chanson 1999). In this discussion, it is shown that basic
houndary layer calculations may be derived for uncontrolled spill-
way chutes and the result may be extended to pressurized intake.

At the upstream end of the chute, a bottom turbulent boundary
layer develops (Fig. 1). The boundary layer development may be

estimated as
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where 8=boundary layer thickness; x=streamwise distance from
the start of the growth of the boundary layer; K=roughness
height; and @ and A=constants (e.g.. Bauer 1954; Cain and Wood
1981). For s stepped profile, the roughness height s
K=s5% cos . The velocity distribution is of the form
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where 1/ =free stream velocity in the ideal-fluid flow region
(i.e., d==y<d) and y=distance normal to the pseudo-bottom
tformed by the step edges. The LDA velocity data of Ohtsu and
Yasuda (1997) showed n~5 in the developing boundary layer
above a steep stepped chute. For an uncontrolled crest. the free-
stream velocity is basically
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For a pressurized intake, the free-stream velocity equals
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where E,=specific energy at the intake.

The location where the outer edge of the boundary layer
reaches the free surface is called the inception point of air entrain-
ment. [ts position L, is defined as the distance from the start of the
growth of the boundary layer. At inception point (x=1,), the com-
bination of continuity and Bernoulli principles gives
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where g,,=MNow rate per unit width. Combining with Eqs. (1) and
(2), it yields
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Fig. 1. Sketch of developing flow region above stepped chute: (a)
uncontrolled crest; (b) gated spillway intake
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Fig. 2. Dimensionless location of inception point of free-surface aeration—comparison between experimental data and Egs. (8) and (9) for ¢
=50° [Beitz and Lawless (1992); Binda et al. (1993): Chanson and Toombes (2002); Frizell (1992); Haddad (1998); Horner (1969). Sorensen
(1985): Tozzi (1992); Zhou (1996); Wahrheit—Lensing (1996); Sanchez-Bribiesca and Gonzalez-Villareal (1996); and Boes (2000}]
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For uncontrolled stepped chutes, Chanson (1995) compared suc-
cessfully Eq, (6) with a large number of experimental data. For
these data, the location of inception point was defined as the first
apparition of “white waters™ at the free surface. A statistical
analysis of the data indicated that the inception point location was
best correlated by

, L), 14
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where the subscript ue refers to uncontrolled crest inflow condi-
tions and F =g, g*sind*(s*cosd)’. A comparison between
Egs. (6) and (8) gives b=0.1.
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With a pressurized intake, the outflow is thinner and faster
than with an uncontrolled crest. In turn, the outer edge of the
boundary layer is expected to reach the free surface more rapidly
than on an uncontrolled chute for an identical How rate and
stepped geometry. The reasoning is confirmed by Eg. (7), which
may be rewritlen as
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pressurized intake (9)

where the subscript pi refers to pressurized intake inflow condi-
tions and Fy=intake flow Froude number. In Eq. (9), right-hand
side, the last term is a correction factor o account for the intake
flow conditions.

Eqs. (8) and (9) are presented in Fig. 2. They are compared
with experimental data obtained with pressurized intake and un-
gated spillway intake including large prototype data (Trigomil
dam). The results (Fig. 2) demonstrate that the inception point is



located significantly more upstream with pressurized intake in-
flows than with uncontrolled chutes, The difference increases
with increasing inflow Froude number Fy. Fig. 2 shows further a
good agreement between Eq. (8) and uncontrolled chute data, as
well as between Eq. (9) and Boes® ( 2000) data. The latter were
obtained with inflow Froude numbers ranging from 3 to 10.
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The authors have presented an important study on the two-phase
flow characteristics of stepped spillways. The contributions given
are of relevance for the design of this kind of hydraulic structure.

The discussers would like to present experimental results of
rescarch on hydrodynamic pressures acting an the steps, as well
as some information on the risk of cavitation on stepped chutes.

According to the author’s description, skimming flow is char-
acterized by a coherent stream that skims over the Steps, where
the edges form a so-called “pseudo-bottom.” The recirculation
region delimited by the faces of the steps and the pseudo-botiom
is mainly responsible for the flow resistance, and 1t can be de-
seribed as an unsteady flow subjected to random fluctuations. As-
sociated with this macroturbulent flow is the gencration of pres-
sure fluctuations on the solid boundaries, which can reach critical
conditions for cavitation,

Pressure Field over a Stepped Spillway

Extensive pressure measurements have heen carried out at the
Polytechnic University of Catalonia aiming to characterize the
pressure field induced by skimming flow over a stepped spillway.

The experimental data were gathered in a 0.8:1 (h:v) sloped
stepped chute, 4.30 m high (from crest to toe). 0.60 m wide. under
Froude similarity criteria. Three step heights (s) of 0.10, 0.07. and
0.05 m were investigated.
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Fig. 1. Empirical probability density function (epdf) of the pressure
fluctuations compared to normal distribution (636 s of run time,
65600 points). The pressure measurement is located at L/K=35.13
for b, /s=2.25; pwn/ ¥ is the mean dynamic pressure and a /vy is the
root-mean-square of dynamic pressure Auctuations.
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