SELF-AERATED FLOWS ON CHUTES AND SPILLWAYS

By H. Chanson'

ABsTRACT: In open channel flows, an important design parameter is the amount
of entrained air. The presence of air within the flow increases not only the bulk
of the flow, but also the transfer of atmospheric gases (e.g. oxygenation). Further
acration of high-velocity flows may prevent or reduce cavitation damage. The
present paper reviews the characteristics of self-aerated flows on spillways and
chutes, including uniform flows and gradually varied flows. First, the uniform flow
conditions are presented with new prototype results. Similarities with suspended-
sediment flows and extremely rough flows are developed and the interaction be-
tween air bubbles and turbulence is discussed. Then, the basic equations for grad-
ually varied flows are developed using the same method as Wood in 1985. The
results are applied to chutes and tunnel spillways and are compared with experi-
mental data.

INTRODUCTION

The presence of air in open channel flows increases the bulk of the flow
which must be taken into account when designing spillway and chute
sidewalls (Falvey 1980). Also, the presence of air within the boundary layer
reduces the shear stress, and the resulting increase of momentum must be
considered when designing a ski jump downstream of a spillway (Ackers
and Priestley 1985). Further, the presence of air within high-velocity flows
may prevent or reduce the damage caused by cavitation (May 1987; Falvey
1990). Air entrainment on chutes has been recognized also for its contri-
bution to the air-water transfer of atmospheric gases such as oxygen and
nitrogen (Wilhelms and Gulliver 1989).

In the first part of the present paper, uniform self-aerated flows are
studied using the same method used by Wood (1983). Comparisons are
made with experimental data. The results are discussed with analogy to
flows over rockfill dams and suspended sediments flows. In the second part
of the paper, the gradually varied flow region is described using the same
method as that used by Wood (1985). The results are discussed and com-
pared with experimental data.

Mechanisms of Air Entrainment on Chutes

In high-speed flow down a steep chute, air is entrained at the free surface;
this process is called self aeration. Several explanations were proposed to
describe the mechanisms of self aeration. Keulegan and Patterson (1940)
analyzed wave instability in open channel flows, and their work suggests
that air may be entrained by breaking waves at the free surface, if the flow
conditions satisfy F > 1.5. Volkart (1980) indicated that air is entrained by
water drops falling back into the water flow. Hino (1961) and Ervine and
Falvey (1987) suggested that air is entrapped by turbulent velocity fluctua-
tions on the free surface.
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It is believed that air entrainment occurs when the turbulence level is
large enough to overcome both surface tension and gravity effects. The
turbulent velocity normal to the free surface v" must be large enough to
overcome the surface tension pressure of the entrained bubble (Rao and
Rajaratnam 1961; Ervine and Falvey 1987) and greater than the bubble rise
velocity component for the bubble to be carried away. These conditions
become
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where o = surface tension; p,, = water density; d, = bubble diameter; u,
= bubble rise velocity; a = spillway slope. Air entrainment occurs when
the turbulent velocity v’ satisfies both (1) and (2). It must be noted that (1)
derives from Ervine and Falvey’s (1987) work. Fig. 1 shows both conditions
for bubble sizes in the range of 1-100 mm and slopes from 0° to 75°. The
rise velocity of individual bubbles in still water was computed as by the
method of Comolet (1979). Fig. 1 suggests that self aeration will occur for
turbulent velocities normal to the free surface greater than 0.1-0.3 m/s and
bubbles in the range of 8—40 mm. For steep slopes the action of the buoyancy
force is reduced and larger bubbles are expected to be carried away.

Self-Aeration on Spillway Chute

For a spillway flow, the entraining region follows a region where the flow
over the spillway is smooth and glassy. Next to the boundary, however,
turbulence is generated and the boundary layer grows until the outer edge
of the boundary layer reaches the surface. This point is called the point of
inception (Fig. 2). Downstream of the point of inception, a layer containing
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FIG. 1. Critical Turbulent Velocity v’ for Air Entrainment
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FIG. 2. Self-Aeration on Chute Spillway

a mixture of both air and water extends gradually through the fluid. The
rate of growth of the layer is small and the air concentration distribution
varies gradually with distance. Far downstream, the flow will become uni-
form. This region is defined as the uniform equilibrium flow region.

Definitions

The local air concentration is defined as the volume of air per unit volume.
The characteristic flow depth d is defined as

d:L%(l—C)dy ......................................... 3)

where y is measured perpendicular to the spillway surface; Yy = depth
where the local air concentration is 90%. The model and prototype data
presented in this paper were obtained using conductivity probes. A con-
ductivity probe records the average time of passage of air bubbles and
provides the air concentration only if the air velocity equals the water ve-
locity (i.e. V,/V,, = 1). Above 90% of air concentration, the slip ratio V. /
V., no longer equals 1 (Cain 1978, Chanson 1988), and the characteristic
depth d must be defined from 0 to 90% only. The depth averaged mean air
concentration C,,,, 1s defined as

(1~ i Wiog = . oo » v B wines ol siorn b et oo 4 (4)

The average water velocity U, is defined as
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where g,, = water discharge per unit width. The characteristic velocity Vg,
is defined as that at Y.

UniForm FLow REGION

Equilibrium Air Concentration Distribution

Wood (1983) reanalyzed Straub and Anderson’s (1958) set of self-aerated
flow measurements. The analysis showed that the average air concentration
for uniform flow conditions C, is independent of the upstream geometry
(1.e. discharge, Froude number, relative roughness) and is a function of the
slope only (Table 1, column 2). Fig. 3 shows the average air concentration
C. as a function of the slope « for Straub and Anderson’s (1958) data
obtained on a model and field data presented by Aivazyan (1987). The
agreement between the model and prototype data is good. For slopes flatter
than 50°, the average air concentration may be estimated as

Co = DIOISIRIel - o com v a8 s w wsrdh =iy oo o Sreal Sl e 5 (6)

It must be noted that Aivazyan’s (1987) and Jevdjevich and Levin’s (1953)
data were initially presented with reference of the depth Y,4 corresponding
to 98% air concentration and were recalculated with reference to Y,.

Hartung and Scheuerlein (1970) studied open channel flows with large
natural roughness (k; in the range of 0.1-0.35 m) and steep slopes (a in
the range of 6°-34°). The extremely rough bottom induced a highly turbulent

TABLE 1. Dimensionless Air Concentration and Velocity Distribution in Uniform
Self-Aerated Flow

Slope 9w
(degrees)| C....? |G’ cos a® Bl® Vi Vs M E
(1) () 3) (4) (5) (6) (7)
(a) Values
e 0.161 8.000 0.003021 0.688 1.029 1.075
15.0 0.241 5.745 0.02880 0.609 1.039 1.097
225 0.310 4.834 0.07157 0.554 1.033 1.085
30.0 0.410 3.825 0.19635 0.467 1.042 1.105
375 0.569 2.675 0.6203 0.335 1.061 1.148
45.0 0.622 2.401 0.8157 0.301 1.038 1.097
60.0 0.680 1.894 1.354 0.241 1.107 1.249
75.0 0.721 1.574 1.864 0.206 1.138 1.318
(b) Analytical formula for a power law velocity distribution (eq. (10))
— = = — n (n + 1) (n + 1)
n+1 n(n + 2) n*(n + 3)
(c) Computed value for n = 6.0
— — - — 0.857 1.021 1.059

*Data from Straub and Anderson (1958).
"Computed from Straub and Anderson’s (1958) data.
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FIG. 3. Equilibrium Air Concentration as Function of Channel Slope (Straub and
Anderson 1958; Aivazyan 1986)

flow with air entrainment. Knauss (1979) indicated that the quantity of air
entrained was estimated as

Co=1ddsina — 0.08 ......oooovuieeee (7)

This result is of similar form as (6). Both (6) and (7) are plotted on Fig. 3.
For a given mean air concentration the diffusion of air bubbles within

the air-water mixture can be represented by a simple model developed by
Wood (1984)

Bn’
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where B’ and G' are functions of C, only (Table 1, columns 3 and 4); and
y" = y/Ys,. However, next to the spillway surface, Cain’s (1978) and Chan-
son’s (1988) data depart from (8), and show consistently that the air con-
centration tends toward zero at the bottom. A reanalysis of the data indicates
the presence of an air concentration boundary layer, in which the air con-
centration distribution may be estimated as

Y
CRRIE= .o pmiaim simm o somn & si0a 0 05 5 8 RS 5 S0 e e e 9
aab ()

where k is a constant that satisfies the continuity between (8) and (9); and
9,5 18 the air concentration boundary layer thickness 3,, = 1015 mm (Chan-
son 1989).

Velocity Distribution

Measurements of velocity within self-aerated flows were performed on
Aviemore dam by Cain (1978), and Cain and Wood (1981) showed that the
velocity distribution can be approximated by
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where the exponent n = 6.00 (Chanson 1989) for the roughness of the
Aviemore dam [k, = 1 mm (Cain 1978)]. For uniform nonaerated flows,
Chen (1990) derived a theoretical relation between the exponent » and the
friction factor f as

where K = Von Karman universal constant (K = 0.4); and f is dependent
upon the Reynolds number and the roughness. On Aviemore dam, (11)
would imply f = 0.0356, which is higher than the values computed from
the Colebrook-White formula for nonaerated flow (i.e. f = 0.023 and 0.022).

Cain’s (1978) measurements were made in the gradually varied flow region
with the mean air concentration in the range of 0-50%. To a first approx-
imation, the dimensionless velocity distribution V/ Vg 1s independent of the
air concentration. It is reasonable to believe that this also applies in the
uniform flow region (Wood 1985). The characteristic velocity Vi, may be
deduced by combining (10) with the continuity equation for the water phase,
and this yields

_—q'L—' == Jl — 1l/n ’
T =y O |t s v Bt s s (12)

where C is computed from (8). For the air-water mixture, it is also possible
to define a momentum correction parameter M and a kinetic energy pa-
rameter E as

Yun
L (1 - O)V2dy
M=——— ||| (13)

1 Yoo g
5 [L 1- C)de]

Yo
L (1 - O)V3dy

%U}Ym(l — oV dy}

where d is defined in (3). Using (10), the dimensionless formulation of these
parameters becomes

1
L (1 = Cy="dy
M=(-C,) R L L (15)

: 3
(L (1 = Gy dy’)

1
Jy @ = ey ay

| 3
U“ (1 — €yt dy’]
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Egs. (12), (15), and (16) provide the analytical solutions for Vy,, M, and
E. For n = 6.0, they are plotted in Figs. 4 and 5 as a function of the average
air concentration and compared with experimental data obtained on pro-
totype (Jevdjevich and Levin 1953; Cain 1978) and model (Chanson 1988).
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The scatter of the model data differs from the prototype results because of
the limitation of the instrumentation on the spillway model.

Friction Factor of Self-Aerated Flows
For uniform aerated flow the energy equation yields

89 sin « d? (Qﬁ)

s 4

ft’

where f, = friction factor for the uniform air-water mixture; and D, = the
hydraulic diameter. Wood (1983) analyzed Straub and Anderson’s (1958)
data and showed that the friction factor for aerated flow £, decreases when
the average air concentration increases. Prototype data (Jevdjevich and
Levin 1953; Aivazyan 1987) confirmed the reduction in the friction factor
observed on model. The data were reanalyzed using (17) formulated in
terms of hydraulic diameters to take into account the shape of the channel
cross section. The results are presented in Fig. 6 where the ratio flf is
plotted as a function of the average air concentration, f being the nonaerated
friction factor calculated using the Colebrook-White formula. Details of the
range of roughness and Reynolds numbers are reported in Table 2.

Dimensional analysis suggests that the ratio f./fis a function of the average
air concentration, Reynolds number, and roughness
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ness on the ratio f/f. For the data of Jevdjevich and Levin (1953), Straub
and Anderson (1958), and Aivazyan (1987), (18) is estimated by (Appendix
I)

s Los = G
=05 [1 + tanh (x A c)]

where C, 5 = mean air concentration for f. = 0.5f

= 0.4726 {1 + (3.6644 — 0.4729 log R) [2.5915 + log ( g’ )]}

H

A comparison between (19) and the experimental data is presented in
Fig. 7. The results are within the accuracy of the data. The general trend
is that, for a given average air concentration, the aerated friction factor
increases with the Reynolds number toward the nonaerated friction factor.
When the Reynolds number increases, the average shear stress increases
and the average bubble size decreases. For small bubble sizes the turbulence
is less affected by the presence of the bubbles, which may explain the
increase of the aerated friction factor toward the nonaerated values when
the Reynolds number increases.

The ratio f,/f is less affected by the roughness. A close scrutiny of the
data suggests that, for low air concentration (i.e. C, < 0.40), the ratio f./f
increases with the relative roughness for a given Reynolds number. But the
lack of data for large air concentrations and large roughness prevents a
generalization of that trend. For a given air concentration and Reynolds
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FIG. 7. Comparison of Eq. (19) and Data of Jevdjevich and Levin (1953), Straub
and Anderson (1958), and Aivazyan (1986)

229



number, the shear stress increases with the roughness and the turbulence
would be less affected by smaller bubble sizes.

Hartung and Scheuerlein (1970) performed experiments on extremely
rough bottom channels (i.e. k,/D,, in the range of 0.02—0.2) and their results
are presented as

fe _ 77 T (i (20)

£ [ =32VFlog(l - C)P

where C, is estimated from (7). This result shows also a reduction of the
ratio f,/f with an increase of air concentration. Further, in fully rough tur-
bulent flows, (20) suggests that the ratio f,/f is independent of the Reynolds
number and decreases with increasing roughness.

Comments

Similar reductions of the friction factor were observed with suspended
sediment in water flows. Vanoni (1946) suggested that the effect of the
sediment is to reduce the turbulence, and for neutrally buoyant particles,
Elata and Ippen (1961) indicated that suspended particies change the struc-
ture of the turbulent motion. Observations obtained in sediment flows (Van-
oni 1946) and aerated flows (Killen 1968) suggest that the Von Karman
universal constant K decreases as the concentration of particles increases.
On Aviemore dam, the shape of the velocity distribution implies a value of
K = 0.318 [(10)]. But Rao and Kobus (1971) showed that the presence of
air concentration increases the value of K, while Coleman (1981) indicated
that the Karman coefficient does not change with increasing suspended
sediment. The complete process is not yet clear, but the writer believes that
the interactions between the turbulent shear stress, the velocity distribution,
and the air concentration boundary layer next to the channel bottom play
a major role in the drag-reduction process. The presence of air bubbles is
expected to affect the turbulence, and any change in the Von Karman
constant means that the turbulent mixing mechanism has been altered.

The bubble size is an important parameter in the alterations of the tur-
bulence. In aerated flows, the size of the bubbles varies across the flow
from large sizes near the free surface (d, > 10 mm) down to small diameters
next to the channel bottom (d, < 1 mm) (Cain 1978). In a turbulent shear
flow, the mean bubble size is determined by the balance between the cap-
illary force and the inertial force caused by the velocity changes over dis-
tances of the order of the bubble diameter. Hinze (1955) showed that the
splitting of air bubbles occurs for

PwU 2db
e e e I S S 2
S W, : w55 (21)
where v? = spatial average value of the square of the velocity differences
over a distance equal to d,,; and W, is a critical Weber number. Experiments
showed that W, is a constant near unity [0.59 in Hinze (1955); 1.26 in Sevik
and Park (1973); and 1.02 in Killen (1982)]. A maximum bubble size (dy).

can be defined from (21). Assuming that the term »2 is in the order of
magnitude of



and for a power law velocity distribution, (10), the maximum bubble size
is in the order of magnitude of

2(n—1)/n
(dy). \/ W, (y)
A 3O ——————— | == ) 23
Yoo 0wV Yod/o) \ Yoo (23)

where n = exponent of the power law. This simple formulation satisfies
the common sense that the maximum bubble size increases with the depth
as the shear stress decreases. For Cain’s (1978) and Chanson’s (1988) flow
conditions, with W, = 1 and n = 6.0, (23) is presented in Fig. 8. Although
(21) was developed for individual bubbles in shear flows, a comparison
between the results of (23) and observations of average bubble sizes (Table
3) shows a good agreement.

GrADUALLY VARIED FLow REGION

Continuity Equation for Air

Downstream of the point of inception, Cain’s (1978) data indicate a slow
increase of the quantity of air entrained along the spillway. Wood (1985)
showed that, for a given mean air concentration, the air concentration
distribution has a shape that is close to the equilibrium air concentration
distribution. In the gradually varied flow region, assuming a slow variation
of the rate of air entrainment, slow variations of the velocity with distance
and a hydrostatic pressure distribution, the continuity equation for the air
phase, and the energy equation can be solved.

The continuity equation for the air phase yields (Wood 1985)

d

75 Qair = Ve = Cobiantly COSIEL 5ty o sions sninmmsimincs alibie 5 scdimmssidbe wmisines s (24)
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FIG. 8. Maximum Bubble Size Distribution in Turbulent Shear Fiow, Eq. (23)
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where g,;; = quantity of air entrained within the flow; u, = local bubble
rise velocity; and V, = local entrainment velocity. [The quantity of air
entrained within the flow and the mean air concentration are related by q.../
Guw = Cean/(1 = Ciean), see discussion by Chanson (1989).] The entrainment
velocity characterizes the quantity of air entrained by turbulent eddies close
to the free surface. In uniform flow the limit of (24) is

0 =(V). — CAu,). cos o
where (V,), and (u,), are the entrainment velocity and rise velocity at equi-

librium, in the uniform flow region. Denoting K, = V/(V,), and K, =
u,(u,)., the continuity equation yields

d
d_S Qair = (KGCE —= Krcmean)(ur)e COS o4

After transformation the continuity equation for the air phase becomes

Zi% Csan = (1 = Cropd) [(u’)‘d* 22 (K., — K Cose) (@ = Cs)
C AW’
ik | PN S| T
- ds,] @)

where W = channel width; d, = flow depth at the origin (s = 0);s" = s/
dy; and W = W/d,.

The parameters K, and K, are expected to be functions of the turbulence
level and bubble size. If the turbulence level and the bubble size distribution
vary from the point of inception down to the uniform flow region, the
parameters K, and K, will be different from unity but will tend toward one
in uniform equilibrium flow. For turbulent air-water pipe flows, Wang et
al. (1990) showed that the presence of bubbles increases the level of tur-
bulence. For self-aerated flows, the presence of bubbles is thus expected
also to increase the level of turbulence, and the entrainment velocity may
increase from the point of inception to the uniform region (i.e. K, < 1).
Downstream of an aeration device, the high level of turbulence (Chanson

TABLE 4. Entrainment and Rise Velocity Parameters K, and K,

K, K, Application Comments

(1) (2) (3) (4)

>1 <1 Flow downstream of point of in-|Low turkulence ard small bub-
ception bles

>1 >1 Flow on ski jump Low turbulence and u, increases

with pressure gradient

= = Uniform equilibrium flow -

<1 <1 Flow downstream of an aeration|High turbulence and O =C;
device with steep slope

<1 =1 Open channel flow in a tunnel|V, is reduced by the limited
spillway; flow downstream of| amount of air
an aeration device with C,_,..,
= C,

<1 >1 Flow downstream of an aeration High turbulence and C,,, > C,
device with flat slope
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1989) suggests that K, > 1. Also, as the size of the bubbles increases with
the mean air concentration and hence the rise velocity, K, is expected to
be less than 1 for C,.., < C.. Examples of the writer’s expectations for the
trend for K, and K, are presented in Table 4.

Assuming that the entrainment and rise velocities are the same in grad-
ually varied flow as in uniform flow (i.e. K, = K, = 1), (27) can be written
as

d
ZTT Cmean == (1 o Cmean) (

+ CIT'ICE!‘I'I. gm
W' ds’

It must be noted that (28) allows the calculations of the average air
concentration C,.,, as a function of the distance along the chute indepen-
dently of the velocity, roughness, and flow depth. For a channel of constant
width, the continuity equation for air becomes the equation obtained by
Wood (1985)

M (Ce = Cmean) (L= Cmcan)

W

d u,d, cos o
—C ey = ————— = Cagis) L = Gz ) ve s v 2 minein o smie 29
357 Crein = =22 (Ce = Cnean) ( ) (29)
and for a constant channel slope, the analytical solution is
1 1 - C 1
e = ks'" + Ky .. (30
i-cr™ (ce = c) (= CIL ~ Co) & Fo - GO

where K, and k are
1 1 1= €y 1
KO—I—C,[I—C,LH(C,-C*) 1—0*]

ud, cos a
G

ko=

in which C, and dy, = mean air concentration and flow depth at the origin
(s = 0).

Experimental data on model and prototype self-aerated flows (Straub and
Lamb 1956, Isachenko 1965; Rao and Kobus 1971, Cain 1978, Xi 1988) and
downstream of an aeration device (Chanson 1988) were used to verify (30).
The data provide straight lines with a mean normalized coefficient of cor-
relation of 0.90 (Table 5, column 7). The slope of these lines implies values
of the rise velocity u, in the range of 0.2-41 cm/s (Table 5, column 5).
These values of u, may be interpreted as the average value for each exper-
iment and are plotted as a function of the flow velocity at the start of air
entrainment (i.e. U, = q,/d,) in Fig. 9.

For self-aerated flows, the flow velocity U, = q./d, is the point of
inception where the flow is nearly uniform and the turbulence quasiho-
mogeneous. Hence the velocity (g,,/d.) characterizes the turbulence of the
flow, and Fig. 9 would suggest that the rise velocity may increase with the
turbulence. Even so, this result must be balanced by the effects of the bubble
size. The observations of bubble sizes, reported in Table 3, indicate that
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TABLE 5. Bubble Rise Velocity: Computed Values

Slope G q,/d, u, ks
Experiment (degrees) | (m?s) | (m/s) | (m/s) | (mm) r Reference
(1) (2) (3) (4) (5) (6) (7) (8)
Aviemore dam® 45.0 223 | 147 | 040 1.0 0.998 | Cain (1978)
- 45.0 3.16 16.3 0.39 1.0 0.981 [ Cain (1978)
Meishan 525 0320 | 8.3 0.17 0.07 | 0.995 | Xi (1988)
St. Anthony Falls 30.0 0.396 7.4 0.11 0.05 | 0.988 |Straub and Lamb (1956)
Isachenko 21.25 0.15 456 | 0.039 | 0.1 0.966 | Isachenko (1965)
Isachenko 21.25 0.25 5.47 | 0.033 | 0.1 0.991 | Isachenko (1965)
Isachenko 21.25 0.40 6.47 | 0.046 | 0.1 0.983 | Isachenko (1965)
Isachenko 21.25 0.60 7.48 | 0.047 | 0.1 0.994 | Isachenko (1965)
Isachenko 21.25 0.90 8.65 | 0.043 | 0.1 0.844 | Isachenko (1965)
Isachenko 21.25 0.25 485 0.016 | 3.0 0.682 | Isachenko (1955)
Isachenko 21.25 0.40 574 | 0.053 | 3.0 0.989 | Isachenko (1965)
Isachenko 21.25 0.60 6.63 | 0.069 | 3.0 0.991 | Isachenko (1965)
Isachenko 21.25 0.90 7.66 | 0.076 | 3.0 0.991 |Isachenko (19565)
Isachenko 21.25 0.25 471 ) 0.056 | 7.0 0.903 | Isachenko (1965)
Isachenko 21.25 0.40 5.57 | 0.061 7.0 0.945 | Isachenko (1965)
Isachenko 21.25 0.60 6.43 | 0.069 | 7.0 0.903 | Isachenko (1965)
Isachenko 21.25 0.90 7.44 | 0.082 | 7.0 0.928 | Isachenko (1965)
Rao and Kobus 31.98 0.095 4.1 0.003 | 0.91 | 0.339 |Rao and Kobus (1971)
Clyde dam model®| 52.33 0.212 8.2 0.11 0.1 0.985 | Chanson (1988)
Clyde dam model | 52.33 0.396 | 12.0 | 0.16 0.1 0.567 | Chanson (1988)
Clyde dam model | 52.33 0.345 | 10.5 0.10 0.1 0.714 | Chanson (1988)
Clyde dam model | 52.33 0.304 9.2 0.048 | 0.1 0.639 | Chanson (1988)
Clyde dam model | 52.33 0.273 8.3 0.049 | 0.1 0.867 | Chanson (1988)
Clyde dam model 52.33 0.210 6.4 0.044 | 0.1 0.977 | Chanson (1988)
Clyde dam model | 52.33 0429 | 6.4 | 0.011 | 0.1 0.685 | Chanson (1988)
3Self-aerated flow.
®Flow downstream of an aeration device.
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FIG. 9. Bubble Rise Velocity u, Estimated from Eq. (30) as Function of Flow Ve-

locity at Start of Self-Aeration U, = ¢,/d,
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the largest values of u,, presented in Fig. 9, were obtained with large bubble
sizes (i.e. Cain 1978).

Energy Equation . _ _

In the gradually varied flow region, assuming a quasihydrostatic pressure
distribution and slow variations of the velocity, the energy equation yields
(Wood 1985; Chanson 1989)

_ ' da d' F2 dw'
P Sin o« (1 +d a;;) Sf +F W' d'3 ds'
= d = F2 e (31)
cos o — E;i-’%

where E = kinetic energy correction parameter, (14) and (16); d' = dld,,
Fi = q./Vad3; and Sy is the friction slope for aerated flow defined as

856
8gd? \ Dy,

where f, = local value of the aerated friction factor. The slow increase of

flow aeration, observed on both prototype and model, suggests that the

friction factor f, and the energy parameter E can be computed as in uniform

flow using the local value of C,,.,,.

Comments

Egs. (27) and (31) provide two simultaneous differential equations in
terms of the mean air concentration and the flow depth, and these equations
can be solved with a simple explicit numerical scheme. The knowledge of
Ciean and d at any point along the chute enables the calculation of Yq, in
(4); Voo, in (12); the integration constants B' and G' cos «; the air concen-
tration distribution, in (8); and the velocity distribution in (10).

[t must be emphasized that the calculations depend on the assumed rise
velocity u,. Further, (27) depends also on the assumed coefficients K, and
K. At the present time, little information is available on these parameters.
As a first approximation it is.convenient to use K. = K, = 1, but these

parameters may also be determined empirically from existing experiments
as described next. :

APPLICATION

Egs. (29) and (31) were used to reproduce air entrainment on a prototype
spillway (Aviemore) and on a large model (Meishan Hydraulics Lab.). Fig.
10 presents a comparison between calculations and data for Cain’s (1978)
and Xi’s (1988) experiments, where . = distance from the point of inception
and d,, = flow depth at the point of inception—measured by Cain (1978)
at Aviemore dam and computed for Xi’s (1988) experiment using Wood'’s
(1985) formula. The rise velocity was obtained from Table 5 and the rough-
ness heights were taken as k, = 1 mm (Cain 1978) and k, = 0.03 mm (Xi
1988). In Cain (1978), a = 45° 9w = 2.16 m?s; d,, =0.152 m; u, = 0.40
m/s. In Xi (1988), o = 52.5% g, = 0.32 m?/s; dy, = 0.039 m; u, = 0.17
m/s. In each case, the agreement between the data and the analytical results
is good.
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FIG. 10. Self-Aerated Flow Calculations: (a) Cain (1978); (b) Xi (1988)

Application to Tunnel Spillway Flow—Grande-Dixence

Volkart and Rutschmann (1984) performed air concentration measure-
ments in a tunnel spillway of rectangular cross section (W = (.8 m). Using
(29), their data suggest computed rise velocities u, = 0.023 m/s and 0.005
m/s for q,, = 2.75 m?s and 5.5 m?s. These results are not consistent with
those obtained in Table 5. Indeed, in a tunnel spillway, the amount of air
available above the flow is limited. Further, as the air flow above the water
is accelerated, the air pressure will decrease. The entrainment velocity (and
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hence K,) is expected to decrease along the tunnel spillway as the air flow
above the water surface is accelerated and as air is entrained within the air-
water flow. The buoyancy force is not affected because the pressure gradient
across the flow remains quasihydrostatic and the bubble rise velocity may
be assumed constant, u, = (u,)..

Fig. 11 shows a comparison between the experimental data obtained by
Volkart and Rutschmann (1984) and (27) and (31) as a function of the
distance L along the spillway from the intake in which « = 31° and 34.5°
and g, = 2.75 m?/s. The calculations were done assuming k, = 0.1 mm
(steel lining); K, = 1; the coefficient K, was selected by trial-and-error,
decreasing from 0.6 down to 0.5; and the rise velocity (i,), was taken as
that computed for Xi’s (1988) experiments (i.e. «, = 0.17 m/s) on a flume
of similar size and flow velocity.

CoNCLUSION

In uniform aerated flows, a complete flow description can be obtained
as a function of the channel slope, the water discharge, and the nonaerated
friction factor. From the spillway geometry and the discharge, the main
flow parameters (i.e. C,, d, f., Vy) and the air concentration and velocity
distributions can be computed. Comparisons were made with experimental
data obtained on model and prototype for slopes in the range 7.5° to 75°.
It is believed that the interactions between the shear stress, the air concen-
tration boundary layer, and the velocity distribution next to the channel
surface might explain the drag reduction process. But further experimental
work is required to obtain a better understanding of the drag reduction
mechanisms in self-aerated flows.

In the gradually varied flow region, the continuity equation for air and

Kr X
____________________________________ 1 d-DATA
0.4- -
B Cmean - DATA
-0.8 d- EQ. 31
W o & Cmean-EQ. 28
— = ..0. é e
*
© 0.2 / - § Ke
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O e e
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- *-_ . B
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FIG. 11. AirEntrainment on Grande-Dixence Tunnel Spiliway (Volkart and Rutsch-
mann 1984)
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the energy equation provides two simultaneous differential equations in
terms of the average air concentration and the flow depth. Predictions of
self-aeration will, however, depend upon the estimation of the rise velocity,
the entrainment velocity, and the non-aerated friction factor. At the present
time, insufficient data are available and additional work on the turbulence
parameters and bubble sizes is required.

A first analysis of air entrainment in tunnel spillway was developed. The
uniform flow conditions are expected to be different from those obtained
in chutes. They are a function of the boundary conditions, that is, the
geometry of the tunnel, the water flow rate, and the initial air intake ge-
ometry.
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AppeENDIX |. CORRELATIONS BETWEEN RATIO f./f, AIR
CoNCENTRATION, REYNOLDS NUMBER AND ROUGHNESS

The writer investigated the effect of the Reynolds number and roughness
on the ratio f,/f, using the data of Jevdjevich and Levin (1953), Straub and
Anderson (1958) and Aivazyan (1987).

First, the writer analyzed the data neglecting the effects of the Reynolds

number and relative roughness, and found that the ratio f,/f may be esti-
mated as

1 0.490 — C,
r 0.5 [1 + tanh (0.70 _——Ceﬂ —= Ce))] ....................... (32)

with a correlation of r = 0.898 (for 104 data points).
For engineering applications, a simple correlation between the ratio f,/f,
the mean air concentration C,,.,,, and the Reynolds number R is

fe
j

for Cpean > 0.25 and 2-10° < R < 4-107, with a correlation of » = 0.913.
A more general correlation that works well at the limits is

fe CU 3 Cmean
£ =0, 1 + 0. eI Y e o ol & e SRS B BE
f 5 tanh 7 Conn (1 Coos) (34)

where tanh(x) = [exp(x) — exp(—x))/[exp(x) + exp(—x)]; and C,5 =
mean air concentration for f, = 0.5f

Cos = 0.1032857 log R — 01378571 oo (35)

Eq. (34) was established for Reynolds numbers in the range of 2-10° to
4-107, and the normalized coefficient of correlation is r = 0.914. A more
sophisticated correlation for the relationship f,/f = ¢(C,eans R, k./Dy) that
takes into account the influence of the roughness is

= 0.307 + 0.1446 10g R — 1.40-Cons « oo oo (33)
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fe _ Cos = Cmean ) .......... 36)
ris 0.5 |:1 + tanh (h Bl = Gl (36

where
Cos = 000593 +- 0107494 108 R o5 s1506 & si00 5 5.5, 5,004 8 sidie & sisss & 2o (37)

k
N = 0.4726 {1 + (3.6644 — 0.4729 log R) [2.5915 + log (55“)” (38)

with a correlation of » = 0.920.
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AprpPeEnDIX lll. NOTATION

The following symbols are used in this paper:

&
|

= integration constant of equilibrium air concentration distribution;
= air concentration defined as volume of air per unit volume;
C., = depth-averaged equilibrium air concentration (mean air concen-
tration of uniform flow);
—_— depth-averaged mean air concentration defined as (1 — C,,...) Yoo
C. = mean air concentration at start of gradually varied flow region;
mean air concentration for f, = 0.5*f;

O
I

M
I

S?
1
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hydraulic diameter (m) defined as D n = 4 Area/Wetted Perimeter
= 4Wd/(W + 24d);

characteristic flow depth (m);

air bubble diameter (m);

characteristic flow depth (m) at start of gradually varied flow
region;

dimensionless characteristic flow depth d' = dld,;

maximum bubble diameter in shear flows;

kinetic energy correction parameter;

Froude number at start of gradually varied flow region F, =
q./Vgdy;

friction factor of nonaerated flow;

friction factor of aerated flow;

integration constant of equilibrium air concentration distribution;
gravity constant (m/s?);

Von Karman universal constant;

ratio of the entrainment velocity over equilibrium entrainment
velocity K, = V_/(V.).;

ratio of local rise velocity over equilibrium rise velocity K, =
ul(u,).;

equivalent uniform sand roughness (m);

distance along spillway (m);

momentum correction parameter;

exponent of velocity power law;

discharge per unit width (m?s):

normalized coefficient of correlation;

Reynolds number defined as R = Pw U Dylw,;

friction slope;

curvilinear coordinate (m);

dimensionless curvilinear coordinate: s’ = s/d,;

average water velocity (m/s) defined as U, = q./d;

bubble rise velocity (m/s);

bubble rise velocity in uniform equilibrium flow region (m/s);
velocity (m/s);

entrainment velocity (m/s);

entrainment velocity in equilibrium flow region (m/s);
characteristic velocity at Y, (m/s);

root mean square of lateral component of turbulent velocity
(m/s);

spatial average value of square of velocity differences over dis-
tance equal to d,(m?s?);

channel width (m);

critical Weber number characterizing bubble splitting;
dimensionless channel width W' — Wid,;

characteristic depth (m) where air concentration is 90%:
characteristic depth (m) where air concentration is 98%
distance from bottom measured perpendicular to spillway surface
(m);

dimensionless depth y’ = Y ¥g;

spillway slope;

thickness (m) of the air concentration boundary layer;
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. = dynamic viscosity (Ns/m?);
p = density (kg/m?); and
o surface tension between air and water (N/m).

Subscripts
air = air flow;
e = equilibrium uniform aerated flow; and
w = water flow.
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