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Abstract: A hydraulic jump is a sudden, rapid transition from a supercritical flow to a subcritical flow. At large inflow Froude numbers, the
jump is characterized by a significant amount of entrained air. For this paper, the bubbly two-phase flow properties of steady and strong
hydraulic jumps were investigated experimentally. The results demonstrate that the strong air entrainment rate and the depth-averaged void­
fraction data highlight a rapid deaeration of the jump roller. The results suggest that the hydraulic jumps are effective aerators and that the rate
of detrainment is comparatively smaller at the largest Froude numbers. DOl: lO.1061/(ASCE)HY.1943-7900.0000323. © 2011 American
Society of Civil Engineers.
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Introduction

The hydraulic jump is a classical flow situation defined as the rapid
transition from a supercritical open-channel flow to a subcritical
flow. At prototype scales, the jump is characterized by a highly
turbulent flow region with macroscale vortices, which is called
the roller, associated with significant kinetic energy dissipation
and a bubbly two-phase flow region. Fig. 1 shows hydraulic jumps
for different inflow conditions, highlighting the substantial aeration
of the roller. The bubbly two-phase flow is caused by the strong
interaction between the turbulence structures and the free-surface
at the impingement of the supercritical flow with the roller, leading
to some air entrapment. Generally, the air bubble entrainment takes
place at the point at which the turbulent stresses overcome both
surface tension and viscous forces (Ervine and Falvey 1987;
Chanson 1997).

Bubbly flow measurements in hydraulic jumps were first
performed by Rajaratnam (1962). Resch et a1. (1974) and Babb
and Aus (1981) conducted some hot-film probe measurements
in the bubbly flow region, and Resch et a1. (1974) showed the
effects of upstream flow conditions of the air-water flow properties
in the jump roller. Chanson (1995) highlighted the presence of a
local maximum void fraction in the shear layer of hydraulic jumps
with partially developed inflow; that is, at the point at which the
upstream flow is not fully developed, and the turbulent boundary
layer does not extend up to the free smface. Chanson and Brattberg
(2000) and Murzyn et a1. (2005, 2007) showed some seminal
bubbly flow features in steady and in weak hydraulic jumps,
respectively. Turbulence measurements in hydraulic jumps were
also conducted by Rouse et a1. (1959), Liu et a1. (2004), Chanson
(2007), and Kucukali and Chanson (2008); although the first study
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was conducted in a wind tunnel, and the second was restricted to
low Froude numbers (i.e., Fj < 3.3).

Despite these advances, the knowledge of the bubbly two-phase
flow region remains limited. The present study examines in detail
the two-phase flow properties in hydraulic jumps. Experimental
results conducted in a relatively large facility and covering a wide
range of inflow Froude numbers were analyzed. It is the aim of
this work to characterize the bubbly flow properties in steady
and strong hydraulic jumps.

Dimensional Considerations

An experimental investigation performed with geometrically sim­
ilar models must be made on the basis of a sound similitude. For a
hydraulic jump in a horizontal rectangular channel, a dimensional
analysis shows that the parameters affecting the air-water flow
properties at a position (x, y) include the fluid properties, the chan­
nel properties, and the inflow condition properties (Wood 1991;
Chanson 1997). After limited simplifications, it yields a series
of dimensionless relationships for the two-phase flow properties
(Chanson and Gualtieri 2008)

(1)

where C = void fraction; F = bubble count rate; V = velocity;
x = coordinate in the flow direction measured from the nozzle;
y =vertical coordinate; d I and V I =upstream flow depth and veloc­
ity, respectively; XI = distance from the upstream gate; p, /L, and
(J =water density, dynamic viscosity, and surface tension, respec­
tively; W =channel width; and 8 =upstream boundary layer thick­
ness (Fig. 2). Eq. (1) expresses the dimensionless two-phase flow
properties (i.e., the terms on the left) at a dimensionless position
(xld I' YId]) within the roller as functions of the dimensionless
inflow properties and channel geometry. In the terms on the right,
the fourth and fifth terms are the inflow Froude and Reynolds num­
bers, respectively; and the sixth term is the Morton number. The
Morton number is a function only offluid properties and the gravity
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Fig. 1. Air entrainment in hydraulic jumps (photos by Hubert
Chanson); (a) Fr = 7.5, R = 5.6 X 104, d] = 0.018 m, XI = 0.75 m,
X - Xl = 0.150 m, and shutter speed = 1/80 s; (b) Fl = 10.0,
R = 7.5 X 104 , d t = 0.018 m, XJ = 0.75 m, X - XI = 0.350 m, and
shutter speed = 1/80 s

constant. When water and air are used in both the laboratory and the
prototype, the Morton number is invariant (Wood 1991; Crowe et aI.
1998; Chanson 2009b). The two key dimensionless parameters are

Table 2. Probability Distribution Functions of Bubble Chords in the Shear
Layer for F] = 11.2, R = 8.3 X 104 , d l = 0.01783 m, Xl = 0.75 m
(Fig. 9)

x-x] Average chord Number of
(m) y/d] V (m/s) C F (Hz) size (mm) bubbles

0.225 1.04 3.09 0.217 189.1 3.78 8510

1.32 2.90 0.351 211.9 5.73 9540

1.60 2.78 0.382 194.2 5.97 8740

0.400 0.76 2.90 0.101 133.8 2.19 6020

1.32 2.78 0.198 180.8 3.10 8140

1.88 2.28 0.207 158.0 3.00 7110

the inflow Froude number F] = V] / Vg x d1 and Reynolds number
R = p x q/ Ji-, where q =flow rate per unit width.

In an undistorted, geometrically similar model of a hydraulic
jump, the dynamic similarity is achieved if each dimensionless
parameter has the same value in the model and in the prototype.
The turbulent processes and air entrapment in the shear region
are dominated by viscous forces. The dynamic similarity of air
entrainment in hydraulic jumps becomes impossible because the
Froude and Reynolds numbers cannot be equal both in the model
and in the prototype unless at full scale. A Froude similitude is
commonly used in the study of hydraulic jump, and the Reynolds
numbers are typically smaller in laboratory conditions (Henderson
1966). A number of studies showed that the air entrainment in
small-size laboratory models might be drastically underestimated
(Rao and Kobus 1971; Wood 1991; Chanson 1997). Some recent
investigations performed Froude-similar experiments with 5.1 <
F1 < 8.5 and Reynolds numbers between 2.4 x 104 and 9.8 x
104 (Chanson and Gualtieri 2008; Murzyn and Chanson 2008).
The results showed some drastic scale effects in the smaller
hydraulic jumps (R < 4 x 104 ) for the distributions of void frac­
tion, bubble count rate, and bubble size, but the issue of scale
effects is still not settled.

Experimental Facility and Instrumentation

The experiments were performed in a horizontal rectangular flume
at the Gordon McKay Hydraulics Laboratory at the University of
Queensland. The channel length and width were 3.2 m and 0.50 m,

Table 1. Experimental Flow Conditions

Q W Xl V J d1

Run m3/s m m m/s m

Series 1
2 0.0147 0.5 0.75 1.55 0.019
3 0.0166 0.5 0.75 1.75 0.019
1 0.02225 0.5 0.75 2.34 0.019
5 0.0282 0.5 0.75 3.13 0.018
4 0.03255 0.5 0.75 3.52 0.0185
6 0.0367 0.5 0.75 4.08 0.018
7 0.0399 0.5 0.75 4.43 0.Ql8

8 0.0470 0.5 0.75 5.22 0.018
Series 2

090331 0.02025 0.5 0.75 2.19 0.0185
090317 0.02825 0.5 0.75 3.14 0.018
090720 0.03481 0.5 0.75 3.87 0.018
090713 0.03780 0.5 0.75 4.20 0.018
090414 0.04175 0.5 0.75 4.68 0.01783
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Remarks

General observations
3.58 2.9£+4
4.05 3.3£+4
5.42 4.4£ +4
7.46 5.6£ + 4
8.26 6.5£+4
9.70 7.3£+4

10.55 7.9£ + 4
12.43 9.3£ + 4

Two-phase flow measurements
5.14 4.0£ + 4
7.47 5.6E +4

9.21 6.9£+4
10.0 7.5E+4

11.2 8.3E+4
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Fig. 2. Definition of the bubbly two-phase flow region in hydraulic jumps

respectively. The sidewall height was 0.45 m. The sidewalls were
made of 3.2-m-long glass panels, and the channel bed was made
of smooth PVc. This channel was previously used by Chanson
(2007), Kucukali and Chanson (2008), and Murzyn and Chanson
(2009). Photographs of the experimental facility are shown in Fig. 1,
and further details about the apparatus, instrumentation, and data
sets are reported in Chanson (2009a).

The water discharge was measured with a Venturi meter
installed in the supply line and calibrated in situ with a large
V-notch weir. The discharge accuracy was within ±2%. The
clear-water flow depths were measured by using rail mounted
point gauges within 0.5 mm. The inflow conditions were controlled
by a vertical gate with a semicircular shape (0 = 0.3 m). The
clear-water velocities were measured with a Prandtl-Pitot tube
(0 = 3.02 mrn) based on the Prandtl design.

The two-phase flow properties were measured with a double-tip
conductivity probe. The conductivity probe is a phase-detection
intrusive probe designed to pierce the bubbles. It measures the

difference in electrical resistance between air and water (Crowe
et a1. 1998; Chanson 2002). In the present study, the probe
was equipped with two identical sensors with an inner diameter
of 0.25 mm. The distance between the probe tips was fu =
6.96 mm. The probe was manufactured at the University of
Queensland and was previously used in several studies, including
Kucukali and Chanson (2008). The displacement and the position
of the probe in the vertical direction were controlled by a fine ad­
justment system connected to a Mitutoyo digirnatic scale unit with
a vertical accuracy tl.y ofless than 0.1 mm. A single threshold tech­
nique was used for the analysis of the probe signal output; the
threshold was set between 45% and 55% of the air-water voltage
range. A number of two-phase flow properties were derived from
the signal analysis. These included the void fraction C, or air con­
centration, defined as the volume of air per unit volume of air and
water; the bubble count rate F defined as the number of bubbles
impacting the probe tip per second; and the bubble chord size
distribution. The air-water interfacial velocity V was estimated

Fig. 4. Jump toe oscillations: Strouhal number data (present study;
Long et a1. 1991; Mossa and Tolve 1998; Chanson 2007; Murzyn
and Chanson 2009)
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aerated. Some vertical profiles of the void fraction were measured
at a location 0.2 m upstream from the jump toe, and the data
showed that the depth-averaged void fraction Cmean was less than
or equal to 0.11, where Cmenn was defined as

as V = fu/T where fu is the longitudinal distance between bo.th
tips (i.e, fu = 6.96 mm for this study) and T is the averag.e alr­
water interfacial time between the two probe sensors with T
deduced from a cross-correlation analysis (Crowe et al. 1998;
Chanson 1997, 2002).

l Y90
C = Cxd)'mean

o
(2)

Experimental Flow Conditions

A first series of experiments investigated the general hydraulic
jump properties, including upstream and downstream depths and
jump toe fluctuation frequency (Table 1). In the second series, some
detailed two-phase flow measurements were recorded with the
double-tip probe, and the flow conditions are reported in Table 1.

For all experiments, the jump toe was located at Xl = 0.75 m,
and the same upstream rounded gate opening h = 0.018 m was
used for this study. For these conditions, the inflow depth ranged
depending upon the flow rate (d 1 = 0.0178-0.019 m), as shown in
Table 1; and the inflow was characterized by a paltially developed
boundary layer (D/d l = 0.4--0.6). The upstream flow was little

where y =distance normal to the invert; C =local void fraction; and
Y90 = vertical distance from the bed where C = 0.9.

In the present study, the expeliments were conducted primarily
with large Froude numbers (F[ > 7) and lal'ge Reynolds numbers
(R > 5 x 104).

Basic Flow Patterns

A basic feature of hydraulic jumps is the rapid rise of the free­
smface immediately downstream of the jump toe. The free-smface
is strongly turbulent with large vertical fluctuations and a bubbly or
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Fig. 5. Dimensionless distribution of void fraction C-HOlizontal axis: 0.1 x (x - XI lid) + C; (a) F[ = 9.2, R = 6.9 X 104
, d[ = 0.018 m,

Xl = 0.75 m; (b) Fl = 11.2, R = 8.3 x 104, d l = 0.01783 m, Xl = 0.75 m
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foamy structure, as shown in Fig. I f r two Froud number. Fig. 3
prese~ts the ra~o of the downstream to up u'cam depths d2 /d l a a
functIOn ofthe mflow Froude number Fl' The experimental data are
compared with the application of the equa ion of conservation of
momentum

The present data are qualitatively in agreement with the correlations
that Hager et al. (1990) and Murzyn et al. (2007) developed for
F] < 8 and 5, respectively; although both correlations tended to
underestimate the jump length by 20-30% (Fig. 3). For the present
data set, L,. and Lair are best correlated by

(3)

where F] = inflow Froude number. Eq. (3) is compared with
the experimental observations in Fig. 3, illustrating good agreement
except at the largest Froude number. In that case (i.e., F] = 11.2),
the jump roller interfered with the downstream overshot gate.

The dimensionless roller length and bubbly flow region length
are also shown in Fig. 3. For this paper, the roller length L,. was
defined as the location at which the water surface was quasi­
horizontal, and the downstream depth was measured, as shown
in Fig. 2. The length Lair of the bubbly flow region was determined
through some sidewall observations of the entrained air bubbles;
that is, Lair was the average length of the bubbly flow region.

L,. = 13.7 X F?·85 5.4 < F] < 12.4 (4)
d]

L·d7 = 9.54 x F] - 9.1 5.4 < Fj < 12.4 (5)

The horizontal oscillations of the jump toe were recorded. These
oscillations had relatively small amplitudes, and their frequencies
were estimated. The results are presented in Fig. 4 for cases for
which the Strouhal number is defined as S = F toe x ddV l where
F toe is the toe oscillation frequency. The data were compared with
some earlier studies of jump toe oscillations (Fig. 4). The present
jump toe data yielded in average S ~ 0.005 that are close to the
findings of Mossa and Tolve (1998), Chanson (2007), and Murzyn
and Chanson (2009). The comparative results showed that no
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Fig. 6. Void-fraction distributions in a hydraulic jump with partially developed inflow conditions: Xl = 0.75 m, d] = 0.018 m, F1 = 9.2,
R = 6.9 X 104 , X - XI = 0.225, 0.30, 0.45, and 0.60 m; comparison between the experimental data (present study) and the mathematical solution;
(a) X-X] = 0.225 m; (b) X-XI = 0.35 m; (c) X-X] = 0.45 m; (d) X-XI = 0.60 m
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evident relationship between the Strouhal and the Reynolds
nwnbers exists (Fig. 4).

BUbbly Flow Properties of Hydraulic Jumps

The hydraulic jumps are characterized by strong air bubble entrain­
ment, spray, and splashing (Fig. 1). For this paper, the two-phase
flow measurements were conducted for five inflow Froude numbers
ranging from 5.1 to 11.2 with a focus on the largest Froude
numbers.

In hydraulic jumps with partially developed inflow, the turbulent
shear layer corresponds to an advective diffusion region in which
the void-fractions distributions exhibit a peak in the turbulent shear
region (Resch et al. 1974; Chanson 1995). This is shown in Figs. 5
and 6. Fig. 5 presents some dimensionless distributions of the
void fraction along the hydraulic jump for two Froude numbers
(Fj = 9.2 and 11.2). The characteristic location Y90/d[ at which
the void fraction equals 0.90 is also shown (i.e., the thick dashed
line). It characterized the location of the roller's upper free-surface.
Within the roller y < Y90, the void-fraction profiles presented a

h . t' h The vOl'd fraction was about zero next toc aractens IC s ape. .
the invelt. A local maximum C = Cmox was observed 111 the shear
layer, as shown in Fig. 2. Close to the free surface, the void fraction
increased rapidly toward unity.

In the air-water shear layer, the void-fraction distributions
closely followed an analytical solution of the advective diffusion
equation for air bubbles (Chanson 1995)

(6)

where D# = dimensionless diffusivity D# = Dr/(VI x dd;
Dr =air bubble diffusivity; d[ and VI =inflow depth and velocity,
respectively; and Y C max =distance from the bed in which C = Cmax

(Fig. 2). Eq. (6) was compared with data from Fig. 6 at four lon­
gitudinal locations in a hydraulic jump. The results illustrate the
advective diffusion process with a broadening of the air-water shear
region and the lesser maximum void fraction with increasing
distance from the jump toe. Note that the void fraction is small
at about middepth of the flow (Fig. 6). It is believed that this is
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related to the intense advective diffusion process at the largest
Froude numbers; that is, the air bubbles are advected down­
stream very rapidly and do not have time to migrate to the upper
flow region. This advective diffusion process yields a low void­
fraction layer between the air-water shear layer and the upper
free-surface region, as shown in Fig. 6.

Fig. 7 presents some dimensionless distributions of the bubble
count rate F x dl/V) along the hydraulic jump for the same flow
conditions shown in Fig. 5. The characteristic location Ygold l is
shown also. For any bubble shape and size distribution, the bubble
count rate is propOltional to the air-water interface area and
inversely proportional to the average bubble size for a given void
fraction. It is simply proportional to the local rate of reaeration. In
the hydraulic jump roller, the vertical profiles of the bubble count
rate present a distinct, maximum count rate in the air-water shear
layer; that is, yldl ~ 1-2 in Fig. 7, depending on the longitudinal

location. The local maximum bubble count rate in the shear layer is
believed to be linked with the region of maximum shear stress.
Above, the bubble count rate decreases with increasing distance
from the invert, and it is equal to zero for C = 1 and for C = o.

Some two-phase velocity measurements were conducted in
the bubbly flow region with the dual-tip probe by using the mean
interfacial travel time between the probe sensors (i.e., fu =
6.96 mm). Some typical results are presented in Fig. 8 for two
Froude numbers (i.e., F) = 7.5 and 10.0). The figures present
the dimensionless vertical distributions of interfacial velocities
V IV [ in the hydraulic jump roller. The dimensionless location
of the measurement section is given in the legend. At the channel
bed, a no-slip condition imposed V(y = 0) = O. All the velocity
profiles exhibited a similar shape despite some scatter. They
followed the wall jet equations (Rajaratnam 1965; Gupta 1966;
Chanson and Brattberg 2000). In the recirculation region above
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Fig. 9. Probability distribution functions of bubble chords in the shear layer: Fl = 11.2, R = 8.3 x 104, dl = 0.01783 m, Xl = 0.75 m-Flow
characteristics summarized in Table 2; (a) x - Xl = 0.225 m; (b) X - XI = 0.400 m

the shear layer, the present data indicated some negative time­
averaged velocities (Fig. 8). Whereas the probe design was not
intended for some negative velocity measurements, the results
showed that the recirculation motion was qualitatively observed
with the dual-tip probe.

The bubble chord size measurements showed a broad spectrum
of bubble sizes at each location. The range of bubble sizes extended
over several orders of magnitude from less than 0.5 mm to more
than 20 mm. Their distributions were skewed with a preponderance
of small bubbles relative to the mean. In Fig. 9 corresponding to
the air-water shear region, the probability of bubble size is the larg­
est for chord times between 0 and 0.5 mm, although the mean
size was between 2 and 6 mm. The probability distribution func­
tions of bubble size typically followed a log-normal distribution; a
similar finding was observed by Resch et al. (1974) and Chanson
(2007). Fig. 9 shows some typical normalized bubble chord size
distributions in the developing shear layer. For each figure pmt,
the caption provides the location (x - Xl> Y/ d I), the local air-water
flow properties (C, F, V), and the average bubble size. The histo­
gram columns represent the probability of the droplet chord time in
a 0.5 mm chord interval. For example, the probability of a bubble
chord from 1 to 1.5 mm is represented by the column labeled 1 mm.
Bubble sizes larger than 10 mm are regrouped in the last column
(i.e., > 10 mm).

Discussion

In the design of hydraulic structures and stilling basins, a relevant
design parameter is the depth-averaged void fraction and the rate
of air entrainment. In some cases, the flow aeration must be
maximized; for example, for reoxygenation pUlposes. In other
situations, flow aeration must be prevented or reduced; for exam­
ple, to counteract the effect of flow bulking on sidewall heights. In
each case, the amount of air entrainment and the air-water flow
properties must be accurately predicted to optimize the system
performances and to insure a safe operation.

Fig. 10 presents the longitudinal distributions of the depth­
averaged void fraction Cme•n in the hydraulic jump. Cme"n is
defined by Eq. (2) and characterizes the amount of entrained air
because Cmean = Q.ir / (Q + Q.ir) where Q is the water discharge;
and Qair is the rate of air entrainment. The data consistently
how a large rale of air entrainment in the jump. as well as a rapid

deaeralion f the 11 \V with increa ing di lance from the jump
toe lFig. lO(a)). For the data et, the longitudi11al decay in depth­
averaged void fraction is best correlated by

Cme"n = 0.3387 X F~·202 * exp

x [(-0.103 + 0.0073 x F,) x X ~,Xl] (7)
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The following symbols are used in this paper:
C = void fraction defined as the volume of air per unit volume

of air and water;
Cmax = local maximum in void fraction in the developing shear

layer;
Cmean = depth averaged void fraction Cmean = It"" C x dy;

Dj = air bubble diffusivity (m2Is) in the air-water shear layer;
D# = dimensionless air bubble diffusivity D# = D,j(Vj x d]);
d} = flow depth (m) measured immediately upstream of the

hydraulic jump;
F = bubble count rate (Hz) defmed as the number of bubbles

that impact the probe sensor per second;
Fmax =maximum bubble count rate (Hz) in the air-water shear

layer;
Ftoe = hydraulic jump toe oscillation frequency (Hz);

FI = upstream Froude number FI = V I IVg x d I;

g = gravity acceleration (m/s2
) g = 9.80 m/s2 in Brisbane,

Australia;
h = sluice gate opening (m);

K = dimensionless constant;
Lair = hydraulic jump bubbly flow region length (m);

Q = water discharge (m3 Is);
Qair = air flow rate (m3Is);

R = Reynolds number R = P X VI x dl/jl;
T = average air-water interfacial travel time (s) between the

two probe sensors;
V = air-water velocity (m/s);

VI = upstream flow velocity (m/s) V J = QI(W x d1);

W = channel width (m);
x = longitudinal distance from the upstream sluice gate (m);

XI =longitudinal distance from the upstream gate to the jump
toe (m);

YCmax = vertical elevation (m) at which the void fraction in the
shear layer is maximum (C = Cmax );

YFmax = distance (m) from the bed at which the bubble count rate
is maximum (F = Fmax);

Y90 = characteristic distance (m) from the bed at which
C =0.90;

Notation
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The measurements of jump toe fluctuations approximated earlier
studies. The void-fraction distributions presented a local maximum
in the air-water shear layer in which the distributions of void frac­
tions were modeled by an advective diffusion equation. The shear
zone was also characterized by a maximum in bubble count rate.
The experimental observations highlighted a strong air entrainment
rate. The depth-averaged void-fraction data demonstrated a large
amount of entrained air, as well as a rapid deaeration of the jump
roller, although the deaeration was comparatively small at the larg­
est Froude numbers.

The results suggest that hydraulic jumps are effective aerators
and that the dimensionless air content is retained longer at the larg­
est Froude numbers; and thus, these jumps are better suited for use
as an aeration device.
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Fig. 10. Dimensionless longitudinal distributions of depth-averaged
void fraction Cmean in hydraulic jumps; (a) comparison between the
present data and previous studies (Rajaratnam 1962; Massa and Tolve
1998); (b) comparison between the experimental data and Eg. (7)

Conclusion

Eq. (7) was compared with the data in Fig. lO(b). The agreement is
reasonable with a normalized correlation coefficient of 0.947. The
results imply a depth-averaged void fraction proportional to F: /5,
as well as a lower deaeration rate with increasing Froude numbers.
That is, the rate of detrainment is comparatively small at the larger
Froude numbers [Fig. lO(a) and Eq. (5)].

For comparison, the experimental data of Rajaramam (1962)
and Mossa and Tolve (1998) are shown in Fig. lO(a) and are com­
pared with the present data. Note that Rajaratnam (1962) and
Mossa and Tolve (1998) calculated their mean void fraction as
an arithmetic mean rather than by using Eq. (2). The arithmetic
mean is not a true depth-averaged void fraction [Eq. (2)].

Some detailed two-phase flow measurements were conducted in
steady and strong hydraulic jumps with partially developed inflow.
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y = di lance (m) measw·ed nomlal to the flow direction'
Ll.x = I ngiludinal distance (m) between probe sensors; ,

8 = b undary layer lhickne (m);
f..L = dynamic viscosity (Pa· s) of water; and
p = density (kg/m3) of water.
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