
CHARACTERISTICS OF UNDULAR HYDRAULIC JUMPS: 
EXPERIMENTS AND ANALYSIS 

By J. S. Montes' and H. Chanson• 

ABSTRACT: The ~titers measured velocity, pressure and energy distributions, wavelengths, and wave ampli~ 
tudes along undular jumps in a smooth rectangular channel 0.25 m wide. In each case the upstream flow was 
a fully developed shear flow. Analysis of the data shows that the jump has strong three-dimensional features 
and that the aspect ratio of the channel is an important parameter. Energy dissipation on the centerline is far 
from negligible and is largely constrained to the reach between the start of the lateral shock waves and the first 
wave crest of the jump, in which the boundary layer develops under a strong adverse pressure gradient A 
Boussinesq-type solution of the free-snrface profile, velocity, and energy and pressure distributions is developed 
and compared with the data. Limitations of the two-dimensional analysis are discussed. 

INTRODUCTION 

The transition from a supercritical Jlow to a subcritical flo" 
when the upstream Froude number F0 is close to unity is called 
an undular jump. In this type of jump, the flow is characterized 
by free-surface undulations of decreasing amplitude (Fig. I), 
which extend for a considerable distance downstream of the 
transition, and which replace the roller structure of the con· 
ventional jump. Undular jumps have been experimentally stud
ied and described by many authors: Darcy and Bazin (1865), 
Bakhmeteff and Matzke (1936), Fawer (1937), Binnie and 
Orkney (1955), Ippen and Harleman (1956) as part of their 
study on crosswaves in supercritical flow, Ryabe!lko (1990), 
and Yasuda eta!. (1993). The total extent of the available data 
in this (Y.pe of jump is still very small and the more extensive 
tests performed by Chanson were described partially and an
alyzed by Chanson and Montes (1995) omd presented in full 
by Chanson (1995). These experiments were supplemented by 
the work of Dunbabin (1996) and Lindus (1996), which con
centrated on the velocity distributions iit the region preceding 
the jump and on the shock-wave formation. 

The experiments by Chanson at the University of Queens
land were designed to fill some of the more obvious gaps in 
the subject. In Chanson and Montes [(1995) hereafter CM95] 
the writers noted the differences between traveling undular 
surges and undular jumps, and reported on the observed flow 
patterns of undular hydraulic jumps in a smooth rectangular 
channel 25 m long and 0.25 m wide. The experiments were 
performed with fully developed upstream shear flows in which 
the upstream Froude number, F., ranged from 1.05 to 3.0 and 
the ·aspect ratio y,IW varied between 0.075 and 0.455. These 
experiments determined centerline surface profiles, together 
with velo¢ity energy and pressure distributions at selected sec
tions aloi:tg the centerline of the undular jump. These mea
~urements were complemented with visual and photographic 

· ;, Observations on the cross-wave geometry and the extent and 
· position of surface rollers. 

The experiments of Dunbabin (1996) and Lindus (1996) at 
the University of Tasmania supple.went certain areas of the 
experimental work by Chanson. Dunbabin performed experi
ments in a channel of 300 mm internal width and 12 m length 
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with smooth Perspex walls; Lindus experimented in a 200-
mm-wide similar channel. Dunbabin's experiments concerned 
a detailed exploration of the velocity and pressure distribution 
upstream of the first crest and were carried out at three dif
ferent Fronde numbers, F0 = 1.41, 1.52, and 1.63, at which 
the aspect ratios yJW of the flow were 0.247, 0.287, and 
0.263, respectively. Lindus' measurements concerned the 
transverse velocity distribution and the onset of lateral shock 
wave formation. The Froude numbers of the upstream, well
developed flow were between 1.64 and 1.89, and the aspect 
ratios were between 0.205 and 0.225. 

Possible Types of Undular Jumps 

These observations indicated that five type of undular jumps 
could be described, according to the appearance of cross-flow 
(Mach) waves generated at the side walls and the formation 
of a surface roller at the intersection of the cross waves. Lim
iting values of the Froude number to separate the different 
states of flow were obtained through observation. These values 
were found to be sensitive to the aspect ratio, YciW, of the 
channel: the higher the aspect ratio, the lower the limiting 
Froude number for a particular class. This classification am
plified the threefold classification of undular jumps suggested 
by Fawer in 1937. Briefly, below an upstream Froude number 
of L2 (jump type A), cross waves do not appear and the struc
ture of the jump is nearly two-dimensional-therefore inde
pendent of the actual aspect ratio. At the upper range of pos
sible Froude numbers (jump type E), the effect of the aspect 
ratio is very marked. The limit of existence of the undular 
jump is found at an initial Froude number of about 2.9 when 
yJW = 0.10, but when the aspect ratio is increased to 0.45 the 
Froude number is reduced to only 1.5. Beyond these Froude 
number values, the free-surface undulations downstream of the 
jinnp disappear and the jump reverts to a "weak" conven
tional jump. For low aspect ratio ( <0.1 0) the transition Froude 
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FIG. 1. Longitudinal and Transversal Cross Section of Typical 
Undular Jump. Showing Centerline and Wall Profiles 



numbers for the different undular jump types were found to 

be: 

• 'I}tpe A: No cross waves, two-dimensional structure, F < 
F' = 1.22 

• Type B: Cross waves develop, but there is no wave break
ing at their intersection, F < F" = 1.72 

• Type C: Wave breaking can be detected at the first cross
wave intersection, small roller, but no air entrainment, F 
< Fc=2.!0 

• l)'pe D: Air entrainment is noticeable at the intersection 
of the cross waves on the first crest, F < FD = 2.40 

• Type E: The roller formed at the first cross-wave inter
section widens, undulations disappear, F < FE = 2.6 

This paper presents additional observations on the measured 
distributions of pressure, velocity, and energy and their com
parison with the numerical solution of a two-dimensional 
Boussinesq model of the undular jump. This comparison has 
the purpose of defining clearly the applicability of this type of 
solution to the undular jump. 

EXPERIMENTAL RESULTS 

A large number of experiments were performed to record 
the free-surface profiles on the centerline. Some experiments 
(shown in Table I, first eight performed by Cbanson and last 
three by Dunbabin) included measurements of velocity, pres
sure, and total head distributions at the jump centerline at var
ious locations along the undular jump: i.e., upstream of the 
jump (U/S), at the centerline of the lateral shock waves (SW), 
at the first crest (!C), at the first trough (!B), at the second 
crest (2C) and trough (2B), and at the third crest (3C). A full 
presentation of the data in the first eight runs can be found in 
Chanson (1993). 

Fig. 2 presents a typical set of free-surface profiles on the 
centerline. As commented in CM95, when the undular jump 
has an initial Froude number greater than 1.2 (undular jump 
type B to E), the transversal water-surface profile is not hori
zontal, but the transversal profile has the maximum rise and 
depression at the centerline, while the Iongitodinal surface pro
file at the side wall has a much attenuated wave amplitude. 
The structure of the jump is markedly three-dimensional, with 
perceptible changes in the distribution patterns of velocity, en
ergy, and pressure across the flow. A plan view of the jump 
(types .B to E) would show a diamond pattern of the surface, 
caused by the reflection of the cross waves on the vertical 
walls of the .channel, while the surface topography would be 
dominated by the symmetrical hills at the crests and by the 
valleys at the troughs of the wave. 
. t 

. r./IBLE 1. Summ~ry of Velocity and Pressure Distribution Ex
~periments 

' Type of 
q h, undular 

Run (m'/s) YoiW (m) F, Slope jump 

(1) (2) (3) (4) (5) (6) (7) 

HMTJI 0.019& 0.137 0.0292 1.27 0.0044 B 

HMTJ2 0.0198 0.137 0.0240 1.70 0.0083 c 
HMTJ5 0.0200 0.138 0.0210 2.10 0.0132 D 
HMTJ6 0.0198 0.137 0.0191 2.40 0.0173 E 
HMTJ3 0.0397 0.217 0.0468 1.25 0.0044 B 
HMTJ7 0.0399 0.218 0.0420 1.48 0.0038 c 
HMTJ4 0.0400 0.219 O.o3&4 1.70 0.0083 D 
TT2_1 0.0598 0.286 0.0456 1.35 0.0049 B 
RD_l ().0631 0.247 0.061 1.41 0.003 B 
RD_2 0.0792 0.287 0.067 1.52 0.003 B 
RD 3 0.0695 0.263 0.057 1.63 0.003 B 
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AG. 2. l)'pical Centerline Free-Surface Profiles of Uhdular 
Jumpa, W= 0,25 m {Chanson 1993) 

Run TJ2 Fo=l.70 
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AG. 3. Dimensionless Velocity u/U..., Specific Energy El 
(E..)cu and Pressure p/(-yh)"' Distributions along Centerline (Un
dular Jump 1)'pe D1 RunT J2 F., y.IW = 0.138 

Velocity, Energy, and Pressure Distributions 

Fig. 3 shows experimental velocity, energy, and pressure 
data for a typical run (HMTJ2 in Table I), at locations under 
the first crest and the first trough. The velocities, Fig. 3(a), 
were normalized by the mean centerline velocity UCL, and 
shown as a function of y!h, where y = distance from bed mea-
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sured normal to channel bottom, and h = centerline flow depth. 
Fig. 3(b) shows the dimensionless specific energy, EI(Em)a.. as 
a function of ylh. The local specific energy, E, is the energy 
per unit weight with elevation datum taken as the bottom of 
the channel, and (Em)a. is the mean specific energy on the 
centerline. The pressure distribution [Fig. 3(c)] is presented as 
pi( -yh cos <p) versus ylh, where p = pressure; and <p = slope 
angle of bottom. 

Fig. 3 shows a major change of the velocity profile between 
the upstream How and the first wave crest. In particular, a 
strong velocity decrease is observed near the free surface for 
all but the lowest Fronde numbers. Indeed, for F0 > F" (see 
Introduction), a wave-breaking (roller) and air bubble entrain
ment take place at the free surface (CM95). The process en
hances the energy dissipation at the free surface and causes a 
local velocity reduction. 

Downstream of the first wave crest, the velocity field at the 
first trough has a shape similar to the upstream flow. At the 
start of the shock waves, the velocity profile diverges only 
slightly from the upstream velocity field. 

Three-Dimensional Nature of Flow Field within 
Undular Jump 

The three-dimensional nature of the flow is attested by Figs. 
4(a) and 4(b), which show Linctus's (1996) experiments in a 
200-mm-wide perspex rectangular channel at the University of 
Tasmania. The velocity profiles at the 1 C location show not 
only the expected reduction of the mean value, but also that 
the profiles are dissimilar, with a lowering of the point of 
maximum velocity and a further reduction of the surface ve
locity toward the wall. 

Another indication of the three-dimensional nature of the 
How in the undular jump is given by the variation of the mean 
velocity along a vertical plane. The integration of the velocity 
measurements on the centerline shows consistently that the 
centerline discharge, (q)a.. is larger than the mean discharge 
unit discharge, q = QIW, and oscillates along the jump. 

(qh= L udy (1) 

In Fig. 4c, the centerline discharge of the Chanson experi
ments summarized in Table 1 is presented as a function of the 
location along the jump. It shows that larger centerline dis
charges are observed at the crests than at the wave troughs, as 
is to be expected in light of the strong deceleration that the 
flow suffers near the crest sections (Figs. 3a and 4a). which 
tends to emphasize the velocity differential with the flow near 
the wall. The acceleration observed near the troughs explains 
the greater uniformity of the integrated discharge at trough 

, sections 1B and 2B. As the pressure gradients that control the 
1, flow acceleration increase with the Froude number of the flow, 

it is reasonable to connect the oscillation of (q)a. to the Fronde 
number. For the experiments reported in Table 1, the dimen
sionless denterline discharges (q)a.fq range between 1.05 and 
1.6 at the wave troughs, and from 1.1 to 2.05 at the wave 
crests. Hager and Hutter (1984) found a similar longitudinal 
fluctuation of the ratio(q)a./q, although of smaller magnitude 
than that found in the present experiments. The fact that the 
boundary "layer was not fully developed before the jump in 
their experiment may account for this difference. 

Normalization of Velocity Profiles in Region 
Preceding Jump 

Dunbabin (1996) conducted a special study of this velocity 
distribution in this region. Dunbabin measured the centerline 
velocity distribution at several locations from the beginning of 

194/ JOURNAL OF HYDRAULIC ENGINEERING I FEBRUARY 1998 

a) Dimensionless Pressure Dlstrtbution Acroa the 
Chann81 at the First Waw Crest 

e ~A . _., 
.6.,....<21 x_::: 

//Uti Ut/ // tlttl( 1/t I 
PoAtioa (3)-........ (2)~~=t --· 

-- Pasitioa(l),.- ~·---·-
- PositiQII(O)~·-~ ·-·-·-· 

b) Dimensionless Velocity Distribution Across the 

.... .... 
~.,. 

t"' 
! ... 

Channel at the First Wave CtHt 

X 

X 

• •• 

X. 

.. . 
• • • • •• xt • 

A. • Jt 
•• X 

~ ! ....... •• i ••• 
c.., ,; 0 X ~ 

0.10 • ·)( 

0.00 • ._ X 64 

c) 

OM o.so uo 0.70 cuo uo UXI u0 UD uo tAll 

• 

... 
' 

U/S 

v eloclty a/U 

c.nternne unn dtacharge qCUq •. • funcUon of 
the location along U.e julllp 

Lo ...... 

sw 1C •• 2C .. 

~ 
•••IZI' 
U•M ,.,.,. . ..... .,. .4. 
~ 

3C 

FIG. 4. Three Dimensional Effects in Undular Jump: (a) Pres
sure Distributions at Four Transversal Locations. Curvature Ef
fects Seem Much Weaker Near Wall, Data from Lindus (1996); (b) 
Velocity Distributions at Same Locations, with More Uniform 
Profile near Wall, Data from Lindus (1996); (c) Centerline Clafq 
Discharge Distribution at Selected Locations, Oats from Chan
son(1993) 

the jump to the second crest. The findings are that in these 
zones of large, initially adverse and then favorable pressure 
gradients, the velocity distributions have an inner region that 
obeys the law of the wall (logarithmic velocity distribution) 

(2) 

and an outer region that complies with Coles' "law of the 
wake" 
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FIG. 5. Log Plot of Velocity Distribution, Showing Deviation 
from "Law of the Wall" Due to Adverse Pressure Gradient as 
Crest Location Is Approached (Dunbabln 1996} 

(3) 

The shape w(ylh) of the outer region, as found experimentally 
f by Coles, has a characteristic S shape, and is such that w = 0 

" for ylh = 0 and w = 2 for ylh = l. This shape is closely 
approximated by the function 

(4) 

Fig. 5 shows velocity profiles at the centerline for F0 = 1.41, 
1.52, and 1.63. The trend of the experimental points in Dun
babin's exi>eriments follows the normalized wake function of 
Coles, as seen in Fig. 6a, which shows the results for F 0 = 
1.41. The magnitude of the wake component, which is defined 
by Coles' parameter, ll, also varies considerably along the 
undular jump, in response to the variable pressure gradient It 
is at maximum just below the first crest (Fig. 6b ), but by the 
second crest it has returned to a value of about half the max
imum, showing the effect of a smaller adverse pressure gra~ 
dient. Dunbabin correlated the magnitude of the amplitude pa-

rameter, n, with the nondimensional longitudinal pressure 
gradient parameter, i3 = (hh,)l(dpldx), approximated here by 
the expression i3 = (ghluW(dhldx). This correlation, which 
covers a very wide range of values of the pressure gradient 
parameter, is shown in Fig. 6c. The experimental trend is ap
proximated by the empirical curve defined by 

II = 0.213"' (5) 

which applies only to the positive values of J3. The undular 
jump data points follow the same trend as other cases derived 
from the extensive experimental database reported by Coles 
and Hirst (1968). The only other available free-snrface flow 
experiments that supplied data for Fig. 6c, those of Kironoto 
and Graf (1994), have comparatively small pressure gradients. 

Pressure Distributions 
The pressure measurements on the channel centerline 

[shown in Fig. 3(c) and 4(b)] indicate that the pressure distri-
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bution along the undular jump is not hydrostatic. At each wave 
crest, the pressure gradient dpldy is less than the hydrostatic 
pressure, and at each wave trough, the pressure gradient -is 
larger than the hydrostatic pressure. This behavior is predicted 
by the Boussinesq equation type of solution discussed in the 
analysis section and is also a well-known result of elementary 
wave theory. 

Chanson's (1995) experimental data indicate that the depth
averaged pressure gradient (dpldy),J(-y cos <p) is a function 
both of the position along the jump and of the upstream 
Froude number. Two aspect ratios were used in this Calcula
tion: AR = 0.137 and AR = 0.218. The results indicate that 
the mean pressure gradient on the centerline may differ by up 
to 20% from the hydrostatic gradient value (i.e., - 1 ); the 
maximum difference is observed at the first wave crest (lC). 
The deviation of the mean pressure gradient from hydrostatic 
conditions decreases along the jump from the first crest (1C) 
to the third crest (3C) and from the first trough (1B) to the 
second trough (2B ). The results also show that the deviations 
from the hydrostatic pressure increase as the aspect ratio de
creases. 

Yasuda et al. (1993) recorded bottom pressures along an 
undular jump downstream of a gate. The upstream flow was 
a partially developed boundary layer flow. A comparison be
tween Yasuda et al.'s data and the writers' data (of similar 
Fronde number and aspect ratio) indicates the same trends for 
both experiments, although larger pressure gradient fluctua
tions were observed by Yasuda et al. This result suggests that 
the upstream flow conditions affect the amplitude of the pres
sure gradient along the jump. 

Energy Dissipation on Centerline 

A situation observed in the undular jump closely parallels a 
well-known phenomenon in aerodynamics. This is the large 
change in the fluid drag if the Fronde number (Mach number 
in compressible flow) is increased slightly above the critical 
flow value. 'The rise in profile drag, for example, is exception
ally acute on an aerofoil as the Mach number increases beyond 
0.8. The beginning of the undular jump is precisely in this 
region of "transcritical" flow (transonic flow in aerodynam
ics). The experiments show consistently that most of the en
ergy dissipation along the centerline takes place between the 
start of the lateral shock waves (SW) and the first crest (lC). 
Downstream of the first crest, the head loss gradient -Ill// tu 
is of the same order as the bed slope sin <p. This fact had also 
been observed by Fawer (1937). In Fig. 7 the energy dissi
pation on the centerline, (lll/)CL, between the upstream flow 
(U/S) and 1 C is plotted as a function of the upstream Fronde 
number,,wbere (lll/)CL =head difference 

(llH)a. = (H)u~ - (H)tc (6) 

;, · and H = total 'head at the centerline. The experimental data of 
· ' Fig. 6 are compared with the theoretical energy loss, &Jl, in 

the jump from one-dimensional momentum equation 

llH fv'l + 8Fi - 3)3 

Yo !6P,' (VI + 8Fi - I) 
(7) 

Fig. 7 suggests that the equation underestimates the energy 
dissipation; on the centerline even for the smallest Fronde num
bers. 

At the start of the shock waves, the pressure distribution is 
quasi-hydrostatic and the velocity profile is close to the up
stream velocity field. A comparison with the velocity and pres
sure distributions at the first crest (Figs. 3a and 3c) shows that 
a major flow redistribution occurs between the start of the 
shock waves and the first crest. Most of the energy is then 
dissipated in association with the modification of the pressure 
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FIG. 7. Energy Dissipation along Centerline between Up
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of Conventional Jump, a DHference Attributed to Additional 
Drag Due to Lateral Shock Waves 

and velocity fields, which are markedly three-dimensional in 
this region. Because of this characteristic, the centerline mea
surements are representative but do not necessarily fully de
scribe the entire flow field. 

SHOCK WAVES IN UNDULAR JUMP 

Shock waves first form just downstream of the. begi~ning 
of the undular jump, and once formed they are reflected from 
the side walls until they encounter wholly subcritical flow con
ditions. The formation of the shock waves is in itself para
doxical. In transonic flow, shock waves' existence is associated 
with the existence of a body with surface discontinuities; in 
hydraulics, with changes of alignment of the cbanDel walls. 
Obviously such conditions are not met here. The idea is ad
vanced here that the shock waves form due to the rapid growth 
of the boundary layer on the side walls caused by the adverse 
pressure gradient at the beginning of the jump. The supercrit
ical flow regards the solid boundary of the side wall as being 
displaced inward by the lateral boundary layer, and when the 
side-wall boundary layer thickens appreciably due to the ad
verse pressure gradients and eventually separates from the 
wall, the shock waves start. The "body'' shape needed for the 
formation of the shock waves is the virtual boundary created 
by the boundary layer's separating from the solid wall. Once 
formed, the shock waves propagate across the flume and re
store the momentum equilibrium by means of this displace
ment. The increase in drag is then predominantly a wave drag, 
since the skin friction near the region of separation is very 
small. It follows from this argument that, unless the requisite 
adverse pressure gradient exists to trigger the side-wall sepa
ration, such shock waves cannot form. Flows at Froude num
bers less than 1.2 do not have the necessary rise in the water
surface profile up to the first crest to generate the gradient. 

Lindus (1996) conducted experiments of a qualitative nature 
to test this hypothesis. By using a thread as a tracer near the 
wall, Lindus observed that the thread fluctuated and separated 
perceptibly near the start of the shock waves, although at lo
cations upstream of this point, it remained aligned with the 
wall. In the region between the start of the shock wave and 
the first crest, the side-wall boundary layer remains separated 
and it is not until the location of the first crest has been passed 
that the tracer aligns itself with the wall in the accelerated 
region preceding the first trough. Chanson (1993) observed the 
presence of a vertical vortex at the junction of the shock wave 
with the wall; the vortex seems to stretch horizontally along 



the bottom .corner following the flow direction. The vortex 
structure is quite difficult to observe because the surface of 
the flow is not transparent after the start of the shock wave, 
but the vortex fits well with the notion of a dividing streamline 
of u = 0 rolling up at the point of separation. 

The combined action of boundary-layer growth and shock
wave formation is equivalent to an additional drag force on 
the channel, caused by the degradation of momentum near the 
solid wall and the dissipation of energy across the shock wave. 
The first effect prevails at lower Froude numbers, and the en~ 
ergy radiation due to the oblique wave predominates at the 
upper values of the Froude number. The theory of shock-wave 
formation in open channels [lppen (1951), Engelund and 
Munch-Petersen (1953)] finds that the angle of the shock wave 
to the side wall should decrease with the Froude number of 
the flow (sin 6* "" 1/F., for small wall-deflections). However, 
Chanson's (1995) experimental data suggest that this trend is 
not confirmed, and that the angle 6* formed by the shock wave 
and the side wall remains relatively constant at a value be
tween 37° and 40°, with a weak dependence on the aspect ratio 
(Fig. 7). Ippen's theory predicts that this shock wave angle 
would be produced in ideal fluid flow by a local-flow Froude 
number ofF "" 1.7. The divergence of the experimental result 
from the shock-wave formation theory may be ascribed to the 
interaction between the shock wave and the lateral boundary 
layer. The adverse pressure gradient on the boundary layer 
increases with the Froude number because of the increased 
depth ratio between the upstream position and first crest po
sition. The lateral boundary layer consequently thickens and 
eventually separates near the point of shock-wave formation. 
Thus, it is conjectured that an equilibrium is reached, in which 
increases in the upstream Froude number do not increase nec
essarily the flow velocity at the point of inception of the shock 
wave, with the resuJt that 9* remains constant with increas
ing F,. 

Drag Due to Shock Waves 

An expression for the additional drag due to shock waves 
may be suggested by analogy with transonic drag in aerody
namics. The drag due to shock-wave formation in compress
ible flow can be expressed by the relation derived by C. N. 
Lock (Hilton 1952). 

I 
Drag ·force " 2 pU'(M, - M,}' (8) 

M = Mach number for compressible flow; M, = starting Mach 
number for transonic effects; p = density; and U = mean speed 
of the flow. This equation may be recast in a form suitable for 

, open-channel flow by using the analogy between Mach num
' ber for compressible flow and Froude number for free-surface 

flow (Liggett 1994 ). By assuming that the critical Froude num
ber for the channel (Froude number below which shock waves 
cannot form is equal to I) and introducing a coefficient of 
proportionality C, one finds that 

I 
Drag force = C 2 pU'(F, - I)' (9) 

To modify this relation to a form suitable for comparison with 
data of Fig. 8, the energy loss AE may be set equal to AE = 
S1L, where L = longitudinal distance between the formation 
of shock waves and their first crossing, and S1 = slope of the 
energy line. The value of L is related to the cross·wave angle 
6* and the· width W of the channel: L = W/(2 tan 6*). The 
variable S1 is connected with the boundary drag through the 
uniform flow relation S1 = Dl-yh. Using (9) for D one finds 
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This is equivalent to 

ll.E = (c cot 6*) Ff' _ 1 )' 
Yc YciW 

(10) 

The total energy loss from the beginning of the undular 
jump to the first crest consists of the shear and turbulence loss, 
which may be approximately accounted by (7), and the shock
wave loss (10). Fig. 8 suggests that the loss predicred by (10) 
follows the experjmental trend, and that the first term on the 
right-hand side of (10) has a value of about 0.135. The shock
wave loss exceeds the shear losses for Froude numbers larger 
than 1.8, and their combined value (which is much larger than 
in the conventional jump at the same F 0) dispels the notion 
that undular jumps are phenomena almost unaffected by real 
fluid effects (the undular bore analogy). 

ANALYSIS 

The surface profile, amplitude, and wavelength of wavy 
flow have been predicted in the past by two-dimensional mod
els based on the integration of the differential momentum and 
continuity equations (Boussinesq 1871; Fawer, 1937; Serre 
1953). Although some characteristics of the undular jump are 
not constant across the width of the channel, as detailed in 
previous sections, a 2D model provides a useful, if approxi
mate, account of the principal features of the jump and allows 
an understanding of one of its important features-namely, 
the linkage of the length and amplitude of the undulations with 
the energy (or momentum) balance of the flow. This model 
would be primarily suitable to undular jumps of type A, and 
perhaps of type B, but its use in the other types of jumps 
occurring at higher Froude numbers is questionable, since this 
model is limited to moderate curvatures and surface slopes. 

Boussinesq (1871, 1877) was intrigued by the phenomenon 
of the undular jump, which had been described experimentally 
by Bazin (1865). Boussinesq analyzed this problem and de
vised a relatively simple and powerful method to integrate the 
2D equations of motion for steady flow, a method that has 
been followed by many researchers. Boussinesq simplified the 
integration of the equations of motion by adopting certain 
plausible assumptions on the distribution of vertical and hor
izontal velocities, so that a single ordinary differential equation 
linking the flow depth and the longitudinal abscissa x is ob
tained. Boussinesq's original hypotheses were: (I) the hori
zontal velocity at any depth is equal to the mean velocity, 
qlh; and (2) the vertical velocity has linear variation from the 
surface down. Because the surface vertical velocity is a func
tion of the water-surface slope, the integrated energy or rna-
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mentum equation contains terms related to the curvature and 
slope of the water surface. This extended momentum equation 
and similarly derived extended energy equation are called the 
Boussinesq equations. Fawer (1937), Serre (1953), Matthew 
(1963), and Hager and Hutter (1984) have used alternative 
closure hypotheses on different pairs of kinematic variables to 
integrate the momentum equations and create extended equa
tions. 

Modified Boussinesq Equation 

Because the velocity distributions that follow from these 
closure hypotheses do not reflect adequately the effect of the 
developing boundary layer preceding and encompassing the 
undular jump, a two-part velocity distribution model is pre
sented here. In the first part, an inviscid velocity distribution 
model based on fairly simple closure hypotheses is con
structed. This model is later modified to account for boundary 
shear effects. Because of the limitations of the two-dimen
siOnal analysis of a phenomenon that has so many three-di
mensional features, the model has been deliberately made as 
simple as possible. 

Velocity Distribution in Flow with Surface Curvature 

The inviscid velocity distribution analysis is based upon a 
streamlined centered s-n system, defined in Fig. 9(b ), and em· 
bodies the following two geometrical assumptions: 

1. The radius of curvature of the streamlines R betw~n the 
surface and the bottom varies with the depth according 
to the interpolation equation 

(II) 

where K ~ a positive constant of order of unity; a ~angle 
formed by streamline with bottom of channel at origin 
of s-n system, located a distance, y, from bottom; and h 
~ local surface depth. The subscripts b and s define con· 
ditions at the bottom and surface of the flow. 

2. The envelope of the normals to the streamlines is an arc 
of a circle. 

By means of these assumptions it is possible to derive ex
pressions for the Streamline, longitudinal, and transversal ve
locity distributions and the pressure distribution [(see Appen· 
dix I and Fig. 9(b)]. These relations are derived on the 
assumption that the curvature and slope parameters defined by 

h hh" 
e.~ a 1+h" R3 COS 3 

(12) 

and 

h'' 
Et :o: 1 + h'2 (13) 

are small iii comparison with unity, so their squares and prod
ucts are negligible. Here the primes denote differentiation with 
respect to x. 

When these expressions for the velocity and pressure dis
tribution, which contain terms involving the surface slope h' 
and curvature h", are inserted in the definitions of the mean 
energy and momentum (see Appendix I), we obtain the invis
cid Boussinesq equations for energy and momentum (extended 
energy and momentum equations). 
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A velocity distribution was proposed by Prandtl (1927) and 
is today widely employed for the turbulent flow velocity dis
tribution computations over smooth, flat surfaces. This distri
bution in its two equivalent forms for 20 flow with fully de
veloped boundary layer (8 ~ h) is 

(16a) 

(16b) 

where U max :o: maximum longitudinal velocity;. and U = mean 
longitudinal velocity. Later, Spence (1956) found that this type 
of velocity distribution fit the outer part of boundary layers 
developing under pressure gradients, but the inner part was 
better represented by the logarithmic velocity distribution. This 
agrees with the form of the outer velocity law as framed in 
Coles' law of the wake, discussed in the experimental results 
section. 

The exponent N depends mainly on the pressure gradient of 
the flow, more weakly on the Reynolds number. Typical values 
of this parameter for flows with small pressure gradients are 
N = 0.1 to 0.15 for zero or positive pressures, rising toN= 
0.5 for flows near separation in adverse pressure gradients. The 
right-hand side of (16b) may be considered a factor modifying 
the uniform inviscid flow distribution over a flat plate in par
allel flow, where the exponent N tends to 0. 

By analogy to this simple empirical law, the writers propose 



to modify the inviscid streamline velocity distributions for 
wavy flow, Eq. (34) in Appendix I 

V = V exp [-~(I - ..,•.,)] + O(e') ('1 = 2:) 
' K +I h 

to read 

v = v,..,N exp [-~(I - ..,•••)] + O(e') (17) 
K+i 

By following steps similar to those detailed in Appendix I, one 
may derive from this basic equation the corresponding ex
pressions for the longitudinal and transversal velocities, u and 
v, and the pressure_ p: 

Longitudinal velocity u = ~ = (I + N)'lN [I - K ~ I 

. ( I + N •••) _ §. (' + N + ')] + O(E') 
K + 2 + N '1 2 3 + N '1 (18) 

• V >.n...l+N- C [I €o Transversal velOCity v= U =(I+"''' VE•'l - K + 1 

. ( I + N _ K+l) _ §.(I + N)] + O(e') 
K + 2 + N '1 2 3 + N (19) 

Pressure p = .E.. = cos q>(l - '1) 
-yh 

+ Eo(! + N)' U' (I - .., •• ,...,) + O(e') 
K+2N+!gh (20) 

The Boussinesq equations corresponding to these velocity 
and pressure distributions can now be developed. (Here f3 = 
momentum correction coefficient, defined in Appendix IV. No
tation.) 

E U'{ 2€o 
Energy=h=cosq> + (3 2gh I+ K+ 2 + 2N 

· [I + N ( 2 + K + Z: + N)] - E, (! : Z)} + O(e') (21) 

M cosq> U'{ [( 2 Momentum= h' = - 2-. + f3 gh I + €o K + N + 2 

I - 2N ) (N + ')]} 0 2 - K + 2 + 2N - e, N + 3 + (E) (22) 

The variation of the mean energy and momentum with dis
tance x are assumed to be represented by the usual relations 
valid for quasi-parallel flow. 

f dE dM 
dx = S, - S1 ; dx = h(S0 - S1) (23a,b) 

In these relations S1 = gradient of energy line; and S0 = bottom 
slope. · 

Integration of E;loussinesq Equations, calculation of 
Energy, and Momentum Change in Regions with 
Significant Pressure Gradient 

One may use the extended energy equation (23a) to calcu
late the surface profile of the undular jump. This computation 
is complicated by the peculiar characteristics of the boundary 
layer development in the undular jump. Considering the profile 
between the upstream section and the first crest [Fig. 9(a)], 
one can see that the boundary layer in this zone has an adverse 
pressure gradient, and for the initial Froude numbers greater 
than 1.2 shock waves originating from the side walls of the 

channel will be present. The experimental values of the trans
versal velocity distribution exponent N in (17) increase in 
magnitude in this region from about N = 0.12 at the section 
upstream to N = 0.5 at the rest. These are typical conditions 
for boundary layers approaching or reaching separation. As 
discussed in the previous section, the effect of boundary-layer 
thickening (if the upstream flow was undeveloped) and the 
onset of the shock waves on the sidewalls led to a considerable 
increase in the effective drag on the channel boundary, with 
the consequent reduction in the longitudinal energy and mo
mentum. The combination of these two effects is particularly 
evident in the region before the first crest Beyond this point 
the local Froude number decreases to well below its original 
upstream value, with the result that the drag-enhancing effect 
of the shock waves is much diminished. 

The calculation of the frictional effects under the undular 
jump is a fairly complex problem. There are, in fact, very few 
studies of open-channel flow friction and velocity distribution 
with nonuniform characteristics. The recent work of Kironoto 
and Graf (1994, 1995), Song and Graf (19%), and Dnnbabin 
(1996) are most noteworthy exceptions. However, the degree 
of flow nonuniformity in experiments by Graf and coworkers 
is much smaller than that encountered in the undular jump (as 
seen in the value of the Coles wake parameter II in Fig. 6), 
so not a great deal of information from these studies can be 
incorporated in the present calculation of the friction charac
teristics of the flow under the undular jump. The most prom
ising solution seems to be the application of a method used in 
the calculation of boundary layers with pressure gradients. 

Among the wide variety of available methods, the extremely 
simple method developed by Furuya and Nakamura (1968) has 
been shown (Kline et a!. 1968) to provide good results under 
a variety of pressure gradients. The method is attractive in the 
context of the present investigation, because it also uses as its 
basis the power law for velocity distribution in the wall region 
of the flow. Furuya and Nakamura showed that this replace
ment of the more widely accepted logarithmic velocity distri
bution works well provided that the boundary layer is not too 
close to separation, or what would be equivalent, thai the 
shape parameter H = 8.16 is kept below 2. In this relation 8* 
= displacement thickness; and 6 = momentum thickness of the 
boundary layer. This limitat.ion constrains the applicability of 
the method, limiting the initial Froude number to a value of 
F, :;; 1.4.-

In comparison with other methods, the Furuya and Naka
mura's method appears exceptionally attractive because it re
quires only two very simple inputs: the value of the parameters 
6 and C1 = (f/S)(U/Um.J' at the starting point of the calcula
tions. Also, the structure of the method is such that it can be 
easily incorporated into the step-by-step numerical calculation 
using the extended energy equation. In contrast, other bound
ary-layer calculation procedures may require data that is im
possible or inconvenient to supply for engineering computa
tions such as integral parameters related to turbulence, 
entrainment parameters, or the dissipation integral. 

It may be noted that Furuya and Nakamura's method also 
has a disadvantage: The calculation of the nondimensioual 
friction parameter C1 unde~ the undular jump has the added 
complication of a spatially oscillating but time-steady pressure 
field. Under this circumstance, the boundary layer needs some 
time to adjust to the pressure field-its "history'' is im· 
portant-and simple methods such as the one advocated here 
might not have enough adjustable parameters to adequately 
reflect this condition. However, because few, if any, boundary~ 
layer computational methods have been tested under these ex
acting conditions, the Furuya and Nakamura method's advan
tages of simplicity of progrannning and good performance 
outweigh the possible disadvantages. Some details of the 
method are shown in Appendix II. 
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Another limitation of the application of the method is that 
the initial Froude number should be one with at best incipient 
formation of shock waves, since shock waves' contribution to 
the energy dissipation is not taken into account in the integra
tion of the Boussinesq equations. These limitations restrict the 
application of Furuya and Nakamura's method of calculation 
of boundary friction to undular jumps of types A and those in 
the lower part of the B bracket 

Numerical Integration of the Extended Energy 
Equation 

The system of energy conservation equations, (21) and 
(23a), was integrated numerically using Hamming's third or
der method (Hamming 1962) to determine the profile h = h(x) 
of the undular jump. The boundary conditions for this case 
were set as follows: For a given initial Froude number F., the 
initial depth h, of the supercritical flow was calculated from 
the expression 1!,/y, = F0213

, and the initial surface slope of the 
flow was set to an arbitrary positive value of h' = 0.001 to 
0.01 to reflect the perturbation of the supercritical flow by the 
downstream control. It was found that the numerical magni
tude of the starting value for h' had negligible effect on sub
sequent results-different choices of h' only slightly altered 
the distance between the upstream section and the first crest 
of the profile, while the depths and wavelengths remained un
altered. An integration using the momentum equation gave 
substantially similar results. 

The relation between the exponent N of the power and the 
friction factor of the channel for a zero pressure gradient or 
small negative pressure gradient has been discussed by Chen 
(1990), who deduced from a simple integration of the velocity 
profile that 

N=! fl. 
K Vs (24) 

where K = Von Karman's constant, with a magnitude close to 
0.4. The measured values off in Chanson's (1993) experiments 
indicate that N has an initial value close to 0; 125 in most 
experiments. 

RESULTS FROM THEORETICAL MODEL OF FLOW 

It must be noted that the characteristics of the undular jumps 
are strongly dependent on the slope and roughness of the chan
nel. Therefore, one must be very careful in comparing exper
iments from diverse sources, where the rate of change of mo
·mentom and energy may have been quite different To present 
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the main theoretical results it is convenient to define an ideal 
situation where the slope of the channel is such that the energy 
(or momentom) increases very slowly or remains constant in 
the region beyond the first crest A decrease of either E or M 
beyond certain limits will collapse the numerical calculations, 
because no flows are possible below a value of Ely, or Mly, 
equal to 1.5. Some geometrical characteristics for the undular 
jump in terms of the initial Froude number for this idealized 
condition are given in Fig. 10, which describes the calculated 
depths at the first crest, first trough, and inflection point. As a 
comparison, the crest depth for the solitary wave (Boussinesq 
1871) and for the conjugate depth of the conventional hydrau
lic jump have been added. The height of the first crest is close 
to the height of the solitary wave for smaller Froude numbers; 
the same similarity can be found between the inflection point 
depth and the conjugate depth of the normal hydraulic jump 
(Fig. 11). 

Fig. 12 details the variation of the first-wave amplitude and 
Fig. 13 details that of the first wavelength. Both figures include 
a comparison with data from recent experiments and with the 
expressions suggested by Fawer (1973) and Andersen (1978). 
It may be noted that the theoretical expression for the ampli
tude seems to constitute a limit toward which the experiments 
tend as the aspect ratio of the flow tends to zero. 

Limitation of Theory 

The main assumption in the derivation of the theoretical 
model was that the curvature and slope were moderate, so that 
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the . squares and higher powers of the parameters eo and e, 
could be taken as small in comparison with unity. From Fig. 
12 it can be seen that the mean value of the curvature param
eter= 0.3 when Fo = 1.4. Its square is then much smaller than 
unity. The mean value of the slope parameter E1 remains 
smaller still and is less signification. This limit, F, < 1.4, is 
also close to the value at which the waves at the first crest 

break, a limit that depends mainly on the aspect ration, yJW, 
of the channel. For an infinitely wide channel this limit is close 
to F0 = 2, but a value representative of the present experiments 
is closer to F, = 1.4. It is possible that the validity of the 
theory extends slightly beyond this value, since outside a nar
row region around the crests of the undular jump the curvature 
is well below the limit of 0.3. The present theory also shows 
that at an initial Froude number of approximately 1.65, the 
surface velocity at the crest becomes a negative, incipient con
dition for the formation of a surface roller . 

Figs. 14-17 contain a comparison with the measured cen
terline velocity, energy, and pressure distributions. Figs. 14 and 
15 describe the conditions of run TJI (initial Froude number 
F 0 = 1.27) for the first crest and first trough locations. Figs. 
16 and 17 portray these results at the same sections for run 
TJ7 (initial Froude number 1.48). In this comparison, the ex
ponent K in (11) has been taken equal to 1.0. Numerical ex
perimentation showed little difference in the output for values 
of K ranging from 0.5 to 2. It is evident from the results of 
Figs. 13-16 that the agreement between theory and experi
ments deteriorates as Froude numbers approach and exceed 
1.5, as was to be expected considering the assmnptions of 
moderate curvature and two-dimensionality made in the deri
vation of the theory. 

CONCLUSIONS 

Additional experiments to supplement the relatively meager 
collection of data have been performed and disclose the geo-
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metrical and kinematical characteristics of the undular jump. 
These experiments confirm the three-dimensional aspects of 
the undular jump, differentiating it from the similar phenom
enon of the undular bore, a traveling train of cnoidal waves 
with which it shares some external characteristics. The undular 
jump shows strong side-wall effects, caused by the rapid 

· growth of the wall boundary layer, and the formation of shock 
~aves. The mechanism of shock-wave formation is explained 
m terms of wall boundary layer separation. The interaction of 
wall boundary layers with the shock waves is considerable 
even with a channel width to flow depth ratio of 7:1. The 
consequence is a marked rearrangement, with respect to a two
dimensional flow, of the transversal depth profile and velocity 
distribution, as well as other features of this phenomenon. In 
particular, one may observe a noticeable increase in the cen
terline discharge. 

The velocity distribution in the region before the first crest 
is shown to contain a strong wake component, the magnitude 
of which is linked to the level of the adverse pressure gradient. 
The~ profiles :""" quite similar to those in boundary layers 
neanng separatiOn and point to the wide variation of bottom 
shear between the beginning and the crest section of the 
boundary layer. 

A two-dimensional Boussinesq equation modified for 
boundary shear effects was developed to predict the major fea
tures of the undular jump at F0 less than 1.4 and the depen
dence of the jump characteristics on the local values of slope 
and roughness of the channel. The model presented here is 
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restricted to moderate curvatures by the needs for mathemat
ical simplicity and is able to predict with fair accuracy the 
depth variation and the influence of the surface curvature and 
slope on the velocity, energy, and pressme distributions. The 
theory also predicts the wavelength and amplitude of the un
dular jump, up to its limit of validity, which is restricted to 
type A jumps and the lower range of type B jumps. 

It would be difficult to justify a more complex two-dimen
sional ?'ode! in light of the surface perturbations caused by 
the obhque waves and the wave-breaking at crests at Froude 
numbers greater than 1.4. It is hoped that future work in this 
subject can be extended to a more realistic three-dimensional 
m"'!el, where special attention is given to the shock-wave gen
eratiOn process and to quantifying the energy dissipation as
sociated with the oblique jumps. 

APPENDIX I. DEVELOPMENT OF INVISCID 
BOUSSINESQ EQUATION 

A streamline centered -s-n system of "reference is defined in 
~ig. 9(b). According to Rouse (1938), the inviscid flow equa
tions of momentum conservation in this system are 

(25) 
av 1 ap az 

V-=----g-as pas as 

(26) 
II' tap az 
-=----g-
R pan an 



where V ; streamline velocity; and R ; local radius of cur
vature. Integrating (25) along a streamline gives the well-

known result 
V' p 

H(n) ; - + - + gz 
2 p 

(27) 

For an irrotational flow the energy, H(n), is constant. Elinti
nating the pressure gradient between (25) and (26), one obtains 

1 av (28) --=--
Van R 

Integrating (28) along the arc PS yields 

In (v); [' dn 
V, n R 

(29) 

where n, and n are the arcs SB and PB in Fig. 9(b ). Cartesian 
coordinates x and y are usually preferred, so the element of 
arc dn is replaced by its equivalent, -dy/cos e. 

In (~) ; - f R !s e (30) 

To proceed further, it is necessary tu resort to some as
sumption regarding the variation of the radius of curvature R 
with the depth y. An assumption similar to that of Fawer 
(1937) Jinks these variables by the relation 

I 1 ( I ---- + R cos 8 - Rb cos 9b Rs cos 6, 
(31) 

where 11 = y/h. This relation provides a continuous variation 
between the boundary values of the radius of curvature. The 
subscripts b and s refer to bottom and surface conditions and 
K is a positive constant of the order of unity. If the bottom is 
fiat (31) simplifies to 

1 K 

~ = Rs COS 88 'f) 
(32) 

Substituting (32) into (30) and integrating, the streamline ve
locity Vis 

V; V, exp [-K ~ 1 R, c~ e, (1 - "ll••')] (33) 

As tan e,; h' and R,; (I + h'')"lh", (33) is equivalent to 

V; V, exp [-K: 
1 
(I- "J]K+t)] (34) 

where the parameter £o stands for hh'/(1 + h'
2
) a terrn closely 

related to the relative curvature of the surface. 
To obtain the longitudinal and transversal components of 

the velocity, the variation of the angle of inclination e with y 
is now defined by assunting, as Boussinesq did, that the arc 
BS [Fig. 9(b)] can be taken to be an arc of circle; then all the 
tangents to the streamlines meet at a common point, F. Simple 
geometry shows that the angle e is specified by 

sine; sine, (*) ; Y£. ~ cos e; ~I - e, (*)' (35a,b) 

Here e, ; h''l(l + h''). 
The longitudinal velocity u ; v cos e is now obtained by 

combining (34) and (35b). The resulting expression is approx
imated by expanding in series the exponential and square root 
functions that appear in these equations and neglecting the 
terrn 0( e'). This is equivalent to assunting that the curvature 
is moderate everywhere. 

u; V (1 -~(I - "J]K+
1
) - ~ "1]2) + 0(£') (36) 

' K + 1 2 

The velocity, v, to the same order of approximation, is 

v; v sin e ; v;v'£."1J [ 1 - K: 
1 

(1 - "IlK)] + O(e
2) (37) 

The mean horizontal velocity, U ; q/h, is now 

U;.!_ f"' Vdn; f' V_2_; V, (1-~ + ~) + O(e') 
n,)

0 
Jo cos& K+ 2 6 

(38) 

Variable V, in terms of U to same order is 

v ; U (1 + ~ - ~) + O(e
2
) 

' K + 2 6 
(39) 

Then the ratio u!U is defined by 

u { r. [ 1 K•'] e, 2 } _, -; 1 - -- --- - "IJ - - (3"1] + 1) + O(t) 
U K+1 (K+2) 6 

(40) 

and v/U is 

.!; Y£."1] {1 -~ [-
1
-- "IlK•'] - ~} + 0(£

2) (41) u I K + I (K + 2) 6 

The last expression is of higher order of approximation than 

(40). 

Pressure Distribution 

The variation of p along the arc PS [Fig. 9(b)] follows from 
the integration of (26) with the boundary condition that p ; 0 
at the surface. In Cartesian coordinates 

i
. 2 

p; 'f(h -.y)cos q> + p _v_ dy 
y Rcos9 

(42) 

By inserting in ( 42) the approximations for the radius of cur
vature and V, one obtains 

P U' ( l'o ) -; (I - "IJ}cos q> + - -- (1 - "IlK+') + O(e)' (43) 
'fh gh K+1 

Extended Energy and Momentum Equations 

The mean energy E is the average through depth. The mo
mentum M of the flow represents the longitudinal momentum 
plus pressure force in that direction 

Energy:£;! f' Edy;! f' (ycosq> +E.+ V
2

) dy (44a) 
h), h), 'I 1g 

Momentum; M; r (; V + P c~s e) dn (44b) 

Substitution of the equations (34), (40), and (41) for the 
streamline velocity, longitudinal and mean longitudinal veloc
ity, and pressure into (44a) and (44b) gives 

U2 [ l'o e] E ; h cos q> + - 1 + -- - ..!. + O(e') 
1g K + 2 3 

(45) 

and 

h
2 

U
2 

[ ] M;- + - I + ~ + 0(£
2

) 
2 g K+ 2 

(46) 

These equations, as could be expected from the similarity 
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of their basic assumptions, are almost identical to those sug~ 
gested by Serre (1953), Matthew (1963), and Hager and Hutter 
(1984) if the curvature exponent K is taken equal to 1, but the 
degree of approximation in terms of the curvature and slope 
parameters is clearly stated. 

APPENDIX II. FURUYA AND NAKAMURA'S METHOD 
FOR CALCULATION OF BOUNDARY LAYER'S 
FRICTIONAL EFFECTS 

This method is a momentum integral method, supplemented 
by an equation for the momentum thickness within the bound
ary layer. It has been slightly modified to suit the character
istics of a free-surface flow with rather large adverse pressure 
gradients. The thickness of the boundary layer in this appli
cation has been assumed to be equal to the depth of the flow; 
therefore, the flow at the beginning of the jump must be well
developed. The velocity profile between the solid boundary 
and the momentum thickness 8 < h is assumed to follow a 
power law similar to that in (16a). Furuya and Nakamura use 
as a special parameter the ratio of the boundary layer velocity 
at y = 8 to the maximum velocity at y = h. This parameter, K 
= u,IU., is related here to the shape parameter H = 8..'8 of 
the boundary layer by the empirical relation 

H = [1.3 + 1.3(0.7 - K) + 3(0.7 - K)']"·'61 (47) 

Ludwieg and Tillman (1949) developed a useful expression 
for the skin friction coefficient (C1/2) = (T.IpU~). which in
corporates the shape parameter H 

c, = o.l23R;..,.. x 1o-<>-•78H; R, = u.8 (48) 
2 v 

Here U.,. is the maximum velocity within the cross section. 
The procedure of calculation with this method consists of in
tegrating step by step the differential equations for 8 and K. 
The first is Von Karman's momentum integral equation 

d6 = _.!_ dU, (H + 2) + 0 
dx U,dx 2 

(49) 

The second is a transport equation for the shape parameter K, 
derived by integrating the x momentum equation from y = 0 
toy= 8. 

dK l-K' 
dx = 1.46 (K + A)8~.., If + 0.118(0.67 - K)] (50) 

Here r = (8/U,)(dU,Idx)R~·25 is Burl's shape factor (Schlicht
ing 1960). The empirical coefficient A has been given here a 
value of A = 1.5 to provide additional computational stability. 
The maximum velocity U. - (1 + N)qlh, where N is the 
exponent in the power law velocity distribution, given by 
Spence's (1956) relation N = (H - 1)/2. 
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APPENDIX IV. NOTATION 

The following symbols are used in this paper: 

A = wave amplitude (m); 
D = drag force (N); 
E = specific energy (m); 
E = mean specific energy (m); 

(E.Jc._ = mean specific energy (m) on centerline; 
F, = Froude nmnber defined as F = qi-Yjfi}; 
F0 = upstream Froude number F0 = q!Vgh!,; 
F~ = Froude number characterizing appearance of a small 

"cockscomb" roller at top of first wave crest; 
f = Darcy friction factor; 
g = gravitational constant: g = 9.803 rnls' in Hobart, Aus-

tralia; 
H = total head (m); 
H = shape parameter of boundary layer, H = 8*/0; 
h = local surface depth (m), measured pe~pendicular to 

channel; 
ho = flow depth (m), measured immediately upstream of hy-

draulic jump; 
h' = dhldx; 
h" = d 2hlflil; 
K = exponent in streamline radius of curvature distribution; 
L = wave length (m); 
Ai = specific momentum of flow (kgls'); 

MA = Mach number in compressible ftow; 
N = exponent of power law velocity distribution; 
n = length of arc normal to a streamline (m); 
p = pressure (Pa); 
Q = discharge (m'/s); 
q = discharge per unit width (m'ls); 

(q)cL = discharge per unit width (m'ls) on centerline; 
R = local radius o curvature of streamline (m); 
R = Reynold's number; 
s = length of arc along streamline (m); 

S0 = bottom slope; 
S1 = slope of energy line; 
u = longitudinal velocity, parallel to channel bottom (rnls); 

u. = shear velocity "• = VTJP, (rnls); 
U = mean flow velocity, U = QIA (m/s); 

U= = maximum longitudinal velocity on centerline (rnls); 
UCL = mean longitudinal velocity on centerline (rnls); 

V = velocity along streamline (m/s); 
W = channel width (m); 
x = distance along charmel bottom (m); 
y = distance from bed measured perpendicular to charmel 

surface (m); 
y, = critical flow depth (m) for a rectangular charmel: y = ...yq:Jg < 

z = bed elevation from datum (m) taken positive upward; 
~ = Boussinesq momentum correction coefficient 13 = J rl 

dAIU'A; also dimensionless pressure gradient defined 
by ll = (ghlu~)(dhldx); 

!i.E = variation in the specific energy of flow (m); 
I!Jl = energy dissipation at center line (m); 
.6x = increment in x direction (m); 

8 = boundary layer thickness (m); 
8* = boundary layer separation thickness = .io (1 - u!U.) 

dy, 
K = Von Karman's velocity distribution parameter; 
'1 = dimensionless vertical coordinate '1 = y/h; 
0 = angle of inclination of streamline with channel (deg.); 

also momentum thickness in boundary layer = 
.io u/U. [I - (u/U.)] dy; 

0* = angle between lateral shock waves and side walls at 
start of lateral shock waves; 

"f = pg (Nim'); 
II = amplitude parameter in Coles' law of the wake; 
p = water density (kglm'); 

T, = bottom sbear stress (N/m'); and 
<p = channel slope angle measured with respect to the hori

wntal (deg.). 

Subscripts 

b = channel bottom; 
B = wave trough; 
C = wave crest; 

CL = on ftume centerline; 
i = at inflexion point; 
s = on surface; 
0 = flow conditions upstream of hydraulic jump; 
I = flow conditions downstream of hydraulic jmnp; and 
* = start of lateral shock waves. 

Abbreviations 

BL = boundary layer; 
SW = location of start of lateral shock waves; 
U/S = upstream How; 
lC = first Wave crest; and 
lB = first wave trough. 
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