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CHARACTERISTICS OF UNDULAR HYDRAULIC JUMPS:
EXPERIMENTS AND ANALYSIS

By J. S. Montes' and H. Chanson®

ABSTRACT: The wiiters measured velocity, pressure and energy distributions, wavelengths, and wave ampli-
tudes along undular jumps in a smooth rectangular channel 0.25 m wide. In each case the upstream flow was
a fully developed shear flow. Analysis of the data shows that the jump has strong three-dimensional features
and that the aspect ratio of the channel is an important parameter. Energy dissipation on the centerline is far
from negligible and is largely constrained to the reach between the start of the lateral shock waves and the first
wave crest of the jump, in which the boundary layer develops under a strong adverse pressure gradient. A
Boussinesg-type solution of the free-surface profile, velocity, and energy and pressure distributions is developed
and compared with the data. Limitations of the two-dimensional analysis are discussed.

INTRODUCTION

The transition from a supercritical flow to a subcritical flow
when the upstream Froude number F, is close to unity is catled
an undular jump. In this type of jump, the flow is characterized
by free-surface undulations of decreasing amplitude (Fig. 1),
which extend for a considerable distance downstream of the
transition, and which replace the roller structure of the con-
ventional jump. Undular jumps have been experimentatly stud-
ied and described by many authors: Darcy and Bazin (1865),
Bakhmeteff and Matzke (1936), Fawer (1937), Binnie and
Orkney (1955), Ippen and Harleman (1956) as part of their
study on crosswaves in supercritical low, Ryabenko (1990),
and Yasuda et al. (1993). The total extent of the available data
in this type of jump is still very small and the more extensive
tests performed by Chanson were described partially and an-
alyzed by Chanson and Montes (1995} and presented in full
by Chanson (1995). These experiments were supplemented by
the work of Dunbabin (1996) and Lindus. (1996), which con-
centrated on the velocity distributions in the region preceding
the jump and on the shock-wave formation.

The experiments by Chanson at the University of Queens-
land were designed to fill some of the more obvieus gaps in
the subject. In Chanson and Montes [(1995) hereafter CM95]
the writers noted the differences between traveling undular
surges and undular juimps, and reported on the observed flow
patterns of undular hydraulic jumps in a smoeoth rectangular
channel 25 m long and 0.25 m wide. The experiments were
performed with fully developed upstream shear flows in which
the upstream Froude number, F, ranged from 1.05 to 3.0 and
the ‘aspect ratio y./W varied between 0.075 and 0.455. These
experiments determined centerline surface profiles, together
with velogity energy and pressure distributions at selected sec-
tions along the centerline of the undular jump. These mea-
gurements were complemented with visual and photographic
observations on the cross-wave geometry and the extent and

v+ position of surface rollers.

The experiments of Dunbabin ( 1996) and Lindus (1996) at
the University of Tasmania supplement certain areas of the
experimental work by Chanson. Dunbabin performed experi-
ments in a channel of 300 mm internal width and 12 m length
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with smooth Perspex walls; Lindus experimented in a 200-
mm-wide sitnilar channel. Dunbabin’s experiments concerned
a detailed exploration of the velocity and pressure distribution
upstreamn of the first crest and were carried out at three dif-
ferent Froude numbers, F, = 1.41, 1.52, and 1.63, at which
the aspect ratios y./W of the flow were 0.247, 0.287, and
0.263, respectively. Lindus’ measurements concerned the
transverse velocity distribution and the onset of lateral shock
wave formation. The Froude numbers of the upstream, well-
developed flow were between 1.64 and 1.89, and the aspect
ratios were between 0.205 and 0.225.

Possible Types of Undular Jumps

These observations indicated that five type of undular jumps
could be described, according to the appearance of cross-flow
(Mach) waves generated at the side walls and the formation
of a surface roller at the intersection of the cross waves. Lim-
iting values of the Froude number to separate the different
states of flow were obtained through observation. These values
were found to be sensitive to the aspect ratio, y./W, of the
channel: the higher the aspect ratio, the lower the limiting
Froude number for a particular class. This classification am-
plified the threefold classification of undular jumps suggested
by Fawer in 1937. Briefly, below an upstream Froude number
of 1.2 (jump type A), cross waves do not appear and the struc-
ture of the jump is nearly two-dimensional—therefore inde-
pendent of the actual aspect ratio. At the upper range of pos-
sible Froude numbers (jump type E), the effect of the aspect
ratio is very marked. The limit of existence of the undular
jump is found at an initial Froude number of about 2.9 when
¥./W=0.10, but when the aspect ratio is increased to 0.45 the
Froude number is reduced to only 1.5. Beyond these Froude
number values, the free-surface undulations downstream of the
jump disappear and the jump reverts to a “weak”™ conven-
tional jump. For low aspect ratio (<0.10) the transition Froude
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FIG. 1. Longitudinal and Transversal Cross Section of Typical
Undular Jump, Showing Centerline and Wall Profiles




aumbers for the different undular jump types were found to
be: .

« Type A: No cross waves, two-dimensional structure, F<
F* =122 '

« Type B: Cross waves develop, but there is no wave break-
ing at their intersection, F < F* = 1.72

+ Type C: Wave breaking can be detected at the first cross-
wave jntersection, small roller, but no air entrainment, F
< F¢=2.10

+ Type D: Air entrainment is noticeable at the intersection
of the cross waves on the first crest, F < F? = 2.40

» Type E: The roller formed at the first cross-wave inter-
section widens, undulations disappear, F < F* = 2.6

This paper presents additional observations on the measured
distributions of pressure, velocity, and energy and their com-
parison with the numerical solution of a two-dimensional
Boussinesq model of the undular jump. This comparison has
the purpose of defining clearly the applicability of this type of
solution to the undular jump.

EXPERIMENTAL RESULTS

A large number of experimenis were performed to record
the free-surface profiles on the centerline. Some experiinents
(shown in Table 1, first eight performed by Chanson and last
three by Dunbabin) included measurements of velocity, pres-
sure, and total head distributions at the jump centerline at var-
jous locations along the undular jump: ie., upstrcam of the
jump (U/S), at the centerline of the lateral shock waves (SW),
at the first crest (1C), at the first trough (1B), at the second
crest (2C) and trough (2B), and at the third crest (3C). A full
presentation of the data in the first eight runs can be found in
Chanson (1993). : -

Fig. 2 presents a typical set of free-surface profiles on the
centerline. As commented in CM95, when the undular jump
has an initial Froude number greater than 1.2 (undular jump
type B to E), the transversal water-surface profile is not hori-
zontal, but the transversal profile has the maximum rise and
depression at the centerline, while the longitudinal surface pro-
file at the side wall has a much atienvated wave amplitude.
The structure of the jump is markedly three-dimensional, with
perceptible changes in the distribution patterns of velocity, en-
ergy, and pressure across the flow. A plan view of the jump
(types B to E) would show a diamond pattern of the surface,
caused by the reflection of the cross waves on the vertical
walls of the channel, while the surface topography would be
dominated by the symmetrical hills at the crests and by the
valﬂ}eys at the troughs of the wave.

TABLE 1. Summary of Velocity and Pressure Distribution Ex-
periments :

K

: Type of
q n undular
Run | (m%s} | w/W (m) Fs Slope Jump
m ) (3 4 {5) (€) @
HMTI1| 00198 | 0.137 | 0.0292 | 127 | 0.0044 B
HMTI2 | 001987 | 0.137 | 0.0240 § 1.70 | 0.0083 C
HMTI5 | 00200 | 0.138 | 0.0210 ( 2.10 § 0.0132 D
HMTI6 | 00198 | 0.137 | 0.0191 240 | 0.0173 E
HMTI3 | 00397 { 0217 | 0.0468 125 | 0.0044 B
HMTI7| 00399 | 0.218 | 00420 | 148 | 0.0038 C
HMTI4 | 0.0400 | 0219 | 0.0384 { 1.70 | 0.0083 D
TF2_1 | 0.0598 | 0.286 § 0.0456 | 133 { 0.0049 B
RD_1 | 0.0631 | 0.247 | 0.061 141 0.003 B
RD_2 | 00792 | 0.287 | 0.067 1.52 | 6.003 B
RD 3 | 00695 | 0.263 | 0.057 1.63 0.003° B
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FIG. 2. Typicai Centerline Free-Surface Profiles of Undular
Jumps, = 0.25 m (Chanson 1993)
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FiG. 3. Dimensionless Velocity u/U., Specific Energy E/
(E.)ou, and Pressure pi(yh).. Distributions along Centerline (Un-
dular Jump Type D), Run TJ2 F,, y./W=0.138

Velocity, Energy, and Pressure Distributions

Fig. 3 shows experimental velocity, energy, and pressure
data for a typical run (HMTJI2 in Table 1), at locations under
the first crest and the first trough. The velocities, Fig. 3(a),
were normalized by the mean centerline velocity Ug, and
shown as a function of y/h, where y = distance from bed mea-

JOURNAL OF HYDRAULIC ENGINEERING / FEBRUARY 1998 / 193




sured normal to channel bottom, and & = centerline flow depth.
Fig. 3(b) shows the dimensionless specific energy, E/(E )., as
a function of y/h. The local specific energy, E, is the energy
per unit weight with elevation datum taken as the bottom of
the channel, and (E,)o is the mean specific energy on the
centerline. The pressure distribution [Fig. 3(c)] is presented as
pl(yh cos @) versus y/h, where p = pressure; and ¢ = slope
angle of bottom.

Fig. 3 shows a major change of the velocity profile between
the upstream flow and the first wave crest. In particular, a
strong velocity decrease is observed near the free surface for
all but the lowest Froude numbers. Indeed, for Fy > F? (see
Introduction), a wave-breaking (roller) and air bubble entrain-
ment take place at the free surface (CM95). The process en-
hances the energy dissipation at the free surface and causes z
local velocity reduction.

Downstream of the first wave crest, the velocity field at the
first trough has a shape similar to the upstream flow. At the
start of the shock waves, the velocity profile diverges only
slightly from the upstream velocity field.

Three-Dimensional Nature of Flow Field within
Undular Jump

The three-dimensional nature of the flow is atiested by Figs.
4(ay and 4(b), which show Lindus’s (1996) experiments in a
200-mm-wide perspex rectangular channel at the University of
Tasmania. The velocity profiles at the IC location show not
only the expected reduction of the mean value, but also that
the profiles are dissimilar, with a lowering of the point of
maximum velocity and a further reduction of the surface ve-
locity toward the wall. :

Another indication of the three-dimensional nature of the
flow in the undular jump is given by the variation of the mean
velocity along a vertical plane. The integration of the velocity
measurements on the centerline shows consistently that the
centerline discharge, (¢)c. is larger than the mean discharge
unit discharge, g = Q/W, and oscillates along the jump.

@D = f u dy m

In Fig. 4c, the centerline discharge of the Chanson experi-
ments summarized in Table 1 is presented as a function of the
location along the jump. It shows that larger centerline dis-
charges are observed at the crests than at the wave troughs, as
is to be expected in light of the strong deceleration that the
flow suffers near the crest sections (Figs. 3a and 4a), which
tends to emphasize the velocity differential with the flow near
the wall. The acceleration observed near the troughs explains
the greater uniformity of the integrated discharge at trough
sections 1B and 2B. As the pressure gradients that control the
flow acceleration increase with the Froude number of the flow,
it is reasonable to connect the oscillation of (g) to the Froude
number. For the experiments reported in Table 1, the dimen-
sionless centerline discharges (q)o/g range between 1.05 and
1.6 at the wave troughs, and from 1.1 to 2.05 at the wave
crests. Hager and Hutter (1984) found a similar longitudinal
fluctuation of the ratio{g)c /g, although of smaller magnitude
than that found in the present experiments. The fact that the
boundary ‘layer was not fully developed before the jump in
their experiment may account for this difference.

Normalization of Velocity Profiles in Region
Preceding Jump

Dunbabin (1996) conducted a special study of this velocity
distribution in this region. Dunbabin measured the centerline
velocity distribution at several locations from the beginning of
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the jump to the second crest. The findings are that in these
zones of large, initially adverse and then favorable pressure
gradients, the velocity distributions have an inner region that
obeys the law of the wall (logarithmic velocity distribution)

oo 1 :
% =<in (’-’“—*)+B (K =~ 04, B ~ 5.5) @

Uy v

and an outer region that complies with Coles’ “law of the
wake™’
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The shape w(y/h) of the ocuter region, as found experimentally
. ¢ by Coles, has a characteristic .5 shape, and is such that w =0
. *% for y/h = 0 and » = 2 for y/h = 1. This shape is closely
" approximated by the function

(-l e

Fig. 5 shows velocity profiles at the centerline for Fy = 1.41,
1.52, and 1.63. The trend of the experimental points in Dun-
babin’s experiments follows the normalized wake function of
Coles, as seen in Fig. 6a, which shows the results for F, =
1.41. The magnitude of the wake component, which is defined
by Coles’ parameter, II, also varies considerably along the
undular jump, in response to the variable pressure gradient. It
is at maximum just below the first crest (Fig. 6b), but by the
second crest it has returned to a value of about half the max-
imum, showing the effect of a smaller adverse pressure gra-
dient. Dunbabin correlated the magnitude of the amplitude pa-

rameter, II, with the nondimensional longitudinal pressure
gradient parameter, B= (hlfr,,)/(dpldx), approximated here by
the expression P = (gh/ui)/(dhidx). This correlation, which
covers a very wide range of values of the pressure gradient
parameter, is shown in Fig. 6c. The experimental trend is ap-
proximated by the empirical curve defined by

H = 0.2B* 5)

which apphes only to the positive values of 8. The undular
jump data points follow the same trend as other cases derived
from the extensive experimental database reported by Coles
and Hirst (1968). The only other available free-surface flow
experiments that supplied data for Fig. 6c, those of Kironoto
and Graf (1994), have comparatively small pressure gradients.

- Pressure Distributions

The pressure measurements on the channel centerline
[shown in Fig. 3(c) and 4(b)] indicate that the pressure distri-
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button aleng the undular jump is not hydrostatic. At each wave
crest, the pressure gradient dp/dy is less than the hydrostatic
pressure, and at each wave trough, the pressure gradient is
larger than the hydrostatic pressure. This behavior is predicted
by the Boussinesq equation type of solution discussed in the
analysis section and is also a well-known result of elementary
wave theory.

Chanson’s (1995) experimental data indicate that the depth-
averaged pressure gradient {(dp/dy),/(y cos @) is a function
both of the position along the jump and of the upstream
Froude number. Two aspect ratios were used in this calcula-
tion: AR = 0.137 and AR = 0.218. The resuits indicate that
the mean pressure gradient on the centerline may differ by up
to 20% from the hydrostatic gradient value (i.e., — 1); the
maximum difference is observed at the first wave crest (1C),
The deviation of the mean pressure gradient from hydrostatic
conditions decreases along the jump from the first crest (1C)
to the third crest (3C) and from the first trough (IB) to the
second trough (2B). The results also show that the deviations
from the hydrostatic pressure increase as the aspect ratio de-
creases.

Yasuda et al. (1993) recorded bottom pressures along an
undular jump downstream of a gate. The upstream flow was
a partially developed boundary layer flow. A comparison be-
tween Yasuda et al.’s data and the writers’ data (of similar
Froude number and aspect ratio} indicates the same trends for
both experiments, although larger pressure gradient fluctua-
tions were observed by Yasuda et al. This result suggests that
the upstream flow conditions affect the amplitude of the pres-
sure gradient along the jump.

Energy Dissipation on Centetline

A situation observed in the undular jump closely parallels a
well-known phenomenon in aerodynamics. This is the large
change in the fluid drag if the Froude number (Mach number
in compressible flow) is increased slightly above the critical
flow value. The rise in profile drag, for example, is exception-
ally acute on an aerofoil as the Mach number increases beyond
0.8. The beginning of the undular jump is precisely in this
region of “transcritical’’ flow (transonic flow in aerodynam-
ics). The experiments show consistently that most of the en-
ergy dissipation along the centerline takes place between the
start of the lateral shock waves (SW) and the first crest (1C).
Downstream of the first crest, the head loss gradient —~AH/Ax
is of the same order as the bed slope sin . This fact had also
been observed by Fawer (1937). In Fig. 7 the energy dissi-
pation on the centerline, (AH)q, between the upstream flow
(U/S) and 1C is plotted as a function of the upstream Froude
number,: where (AH)¢;, = head difference :

(AH Ya = Hus — (Hhe (6}

. f
& and H = total*head at the centerline. The experimental data of

Fig. 6 are compared with the theoretical energy loss, AH, in
the jump from one-dimensional momentum equation

A (V1 + 8F -3y
¥y 16FP (V1 +8F—1)

Fig. 7 suggests that the equation underestimates the energy
dissipation-on the centerline even for the smallest Froude num-
bers. .

At the start of the shock waves, the pressure distribution is
quasi-hydrostatic and the velocity profile is close to the up-
stream velocity field. A comparison with the velocity and pres-
sure distributions at the first crest (Figs. 3a and 3¢) shows that
a major flow redistribution occurs between the start of the
shock waves and the first crest. Most of the energy is then

0

dissipated in association with the modification of the pressure
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of Conventional Jump, a Difference Attributed to Additional
Drag Due to Lateral Shock Waves

and velocity fields, which are markedly three-dimensional in
this region. Because of this characteristic, the centerline mea-
surements are representative but do not necessarily fully de-
scribe the entire flow field.

SHOCK WAVES IN UNDULAR JUMP

Shock waves first form just downstream of the. beginning
of the undular jump, and once formed they are reflected from
the side walls until they encounter wholly subcritical flow con-
ditions. The formation of the shock waves is in itself para-
doxical. In transonic flow, shock waves’ existence is associated
with the existence of a body with surface discontinuities; in
hydraulics, with changes of alignment of the channel walls.
Obviously such conditions are not met here. The idea is ad-
vanced here that the shock waves form due to the rapid growth
of the boundary layer on the side walls caused by the adverse
pressure gradient at the beginning of the jump. The supercrit-
ical flow regards the solid boundary of the side wall as being
displaced inward by the lateral boundary layer, and when the
side-wall boundary layer thickens appreciably due to the ad-
verse pressurc gradients and eventually separates from the
wall, the shock waves start. The “body’’ shape needed for the
formation of the shock waves is the virtual boundary created
by the boundary layer’s separating from the solid wall. Once
formed, the shock waves propagate across the flume and re-
store the momentum equilibrium by means of this displace-
ment. The increase in drag is then predominantly a wave drag,
since the skin friction near the region of separation is very
small. It follows from this argument that, unless the requisite
adverse pressure gradient exists to trigger the side-wall sepa-
ration, such shock waves cannot form. Flows at Froude num-
bers less than 1.2 do not have the necessary rise in the water-
surface profile up to the first crest to generate the gradient.

Lindus (1996) conducted experiments of a qualitative nature
to test this hypothesis. By using a thread as a tracer near the
wall, Lindus observed that the thread fluctuated and separated -
perceptibly near the start of the shock waves, although at lo-
cations upstream of this point, it remained aligned with the
wall. In the region between the start of the shock wave and
the first crest, the side-wall boundary layer remains separated
and it is not until the location of the first crest has been passed
that the tracer aligns itself with the wall in the accelerated
tegion preceding the first trough. Chanson (1993) observed the
presence of a vertical vortex at the junction of the shock wave
with the wall; the vortex scems to stretch horizontally along




the bottom corner following the flow direction. The vortex
structure is quite difficult to observe because the surface of
the flow is not transparent afier the start of the shock wave,
but the vortex fits well with the notion of a dividing streamline
of u = 0 rolling up at the point of separation.

The combined action of boundary-layer growth and shock-
wave formation is equivalent to an additional drag force on
the channel, caused by the degradation of momentum near the
solid wall and the dissipation of energy across the shock wave.
The first effect prevails at lower Froude numbers, and the en-
ergy radiation due to the oblique wave predominates at the
upper values of the Froude number. The theory of shock-wave
formation in open channels [Ippen (1951), Engelund and
Munch-Petersen (1953)] finds that the angle of the shock wave
to the side wall should decrease with the Froude number of
the flow (sin 8* = 1/F,, for small wall-deflections). However,
Chanson’s (1995) experimental data suggest that this trend is
not confirmed, and that the angle 6* formed by the shock wave
and the side wall remains relatively constant at a value be-
tween 37° and 40°, with a weak dependence on the aspect ratio
(Fig. 7). Ippen’s theory predicts that this shock wave angle
would be produced in ideal fluid flow by a local-flow Froude
number of F = 1.7, The divergence of the experimental result
from the shock-wave formation theory may be ascribed to the
interaction between the shock wave and the lateral boundary
layer. The adverse pressure gradient on the boundary layer

- increases with the Froude number because of the increased

)

depth ratio between the upstream position and first crest po-
sition, The lateral boundary layer consequently thickens and
eventually separates near the point of shock-wave formaticn.
Thus, it is conjectured that an equilibrium is reached, in which
increases in the upstream Froude number do not increase nec-
essarily the flow velocity at the point of inception of the shock
wave, with the result that 6* remains constant with increas-
ing F,.

Drag Due to Shock Waves

An expression for the additional drag due to shock waves
may be suggested by analogy with transonic drag in aerody-
namics. The drag due to shock-wave formation in compress-
ible flow canr be expressed by the relation derived by C. N.
Lock (Hilton 1952),

Drag force « % plU(M, — MY &

M = Mach number for compressible flow; M, = starting Mach
number for transonic effects; p = density; and U/ = mean speed
of the flow. This equation may be recast in a form suitable for
open-channel flow by using the analogy between Mach num-
ber for compressible flow and Froude number for free-surface
flow (Liggett 1994). By assuming that the critical Froude num-
ber for the channel (Froude number below which shock waves
cannot form is equal to 1) and introducing a coefficient of
proportionality C, one finds that

Drag force = C% pUF, — 1) ()

To modify this relation to a form suitable for comparison with
data of Fig. 8, the energy loss AF may be set equal to AE =
S,L, where L = longitudinal distance between the formation
of shock waves and their first crossing, and S; = slope of the
energy line. The value of L is related to the cross-wave angle
9* and the width W of the channel: L = W/(2 tan 6*). The
variable S; is connected with the boundary drag through the
uniform flow relation S, = Dfyh. Using (9) for D one finds
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FIG. 8. Shock Wave Angle 0* as Function of Upstream Froude
Number. Comparison with ippen’s (1951) Theory
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";E = (c °;’t1;) F — 1y (10)

The total energy loss from the beginning of the undular
jurmnp to the first crest consists of the shear and turbulence loss,
‘which may be approximately accounted by (7), and the shock-
wave los§ (10). Fig. 8 suggests that the loss predicted by (10)
follows the experimental trend, and that the first term on the
right-hand side of (10) has a value of about 0.135. The shock-
wave loss exceeds the shear losses for Froude numbers larger
than 1.8, and their combined value (which is much larger than
in the conventional jump at the same F) dispels the notion
that undular jumps are phenomena almost unaffected by real
fluid effects (the undular bore analogy).

ANALYSIS

The surface profile, amplitude, and wavelength of wavy
flow have been predicted in the past by two-dimensional mod-
¢ls based on the integration of the differential momentum and
continuity equations (Boussinesq 1871; Fawer, 1937; Serre
1953). Although some characteristics of the undular jump are
not constant across the width of the channel, as detailed in
previous sections, a 2D model provides a useful, if approxi-
mate, account of the principal features of the jump and allows
an understanding of one of its important features—namely,
the linkage of the length and amplitude of the undulations with
the energy (or momentum) balance of the flow. This model
would be primarily suitable to undular jumps of type A, and
perhaps of type B, but its use in the other types of jumps
occurring at higher Froude numbers is questionable, since this
model is limited to moderate curvatures and surface slopes.

Boussinesq (1871, 1877) was intrigued by the phenomenon
of the undular jump, which had been described experimentally
by Bazin (1865). Boussinesq analyzed this problem and de-
vised a relatively simple and powerful method to integrate the
2D equations of motion for steady flow, a method that has
been followed by many researchers. Boussinesq simplified the
integration of the equations of motion by adopting certain
plausible assumptions on the distribution of vertical and hor-
izontal velocities, so that a single ordinary differential equation
linking the flow depth and the longitudinal abscissa x is ob-
tained. Boussinesq’s original hypotheses were: (1) the hori-
zontal velocity at any depth is equal to the mean velocity,
glh; and (2) the vertical velocity has linear variation from the
surface down. Because the surface vertical velocity is a func-
tion of the water-surface slope, the integrated energy or mo-
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mentum equation contains terms related to the curvature and
slope of the water surface, This extended momentum equation
and similarly derived extended energy equation are called the
Boussinesq equations. Fawer (1937), Serre (1953), Matthew
(1963), and Hager and Hutter (1984) have used alternative
closure hypotheses on different pairs of kinematic variables to
integrate the momenturn equations and create extended equa-
tions. '

Modified Boussinesg Equation

Because the velocity distributions that follow from these
closure hypotheses do not reflect adequately the effect of the
developing boundary layer preceding and encompassing the
undular jump, a two-part velocity distribution model is pre-
sented here. In the first part, an inviscid velocity distribution
model based on fairly simple closure hypotheses is con-
structed. This model is later modified to account for boundary
shear effects. Because of the limitations of the two-dimen-
sional analysis of a phenomenon that has so many three-di-
mensional features, the model has been deliberately made as
simple as possible.

Velocity Distribution in Flow with Surface Curvature

The inviscid velocity distribution analysis is based upon a
streamlined centered s-n system, defined in Fig. 9(b), and em-
bodies the following two geometrical assumptions:

1. The radius of curvature of the streamlines R between the
surface and the bottom varies with the depth according
to the interpolation equation

£
1 1 1 1 ¥y .
= + - = 11
Rcos® R,cos b, (R, cos 8, R, cos eb) (h) an

where K = a positive constant of order of unity; 9 = angle
formed by streamline with bottom of channel at origin
of s-n system, located a distance, y, from bottom; and A
= local surface depth. The subscripts b and s define con-
ditions at the bottom and surface of the flow.

2. The envelope of the normals to the streamlines is an arc
of a circle.

By means of these assumptions it is possible to derive ex-
pressions for the streamline, longitudinal, and transversat ve-
locity distributions and the pressure distribution [(see Appen-
dix I and Fig. 9(b)]. These relations are derived on the
assumption that the curvature and slope parameters defined by

v R hE
2t T BT R,cos 6, 1+ A" a2
and
h:2
S =Tt 3

are small if comparison with unity, so their squares and prod-
ucts are negligible. Here the primes denote differentiation with
respect to x.

When these expressions for the velocity and pressure dis-
tribution, which contain terms involving the surface slope A’
and curvature h”, are inserted in the definitions of the mean
energy and momentum (see Appendix I), we obtain the invis-

cid Boussinesq equations for energy and momentum (extended

energy and momentum equations).
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Modification of Inviscid Equations to Atlow for
Boundary Shear Effects

A velocity distribution was proposed by Prandtl (1927) and
is today widely employed for the turbulent flow velocity dis-
tribution computations over smooth, flat surfaces. This distrt-
bution n its two equivalent forms for 2D flow with fully de-
veloped boundary layer (3 = h) is '

N
o (z) (162

i

N

b ¥y

U 1+ N) (h) (16b)
where U... = maximum longitudinal velocity; and I/ = mean
longitudinal velocity. Later, Spence (1956) found that this type
of velocity distribution fit the outer part of boundary layers
developing under pressure gradients, but the inner part was
better represented by the logarithmic velocity distribution. This
agrees with the form of the outer velocity law as framed in
Coles’ law of the wake, discussed in the experimental results
section. :

The expeonent N depends mainly on the pressure gradient of
the flow, more weakly on the Reynolds number. Typical values
of this parameter for flows with small pressure gradients are
N = 0.1 to 0.15 for zero or positive pressures, rising to N =
0.5 for flows near separation in adverse pressure gradients. The
right-hand side of (16b) may be considered a factor modifying
the uniform inviscid flow distribution over a flat plate in par-
allel flow, where the exponent N tends to 0.

By analogy to this simple empirical law, the writers propose




&

to modify the inviscid streamline velocity distributions for
wavy flow, Eq. (34) in Appendix I

Eo B < | =Z
K+1(1 T )]+0(e’)( h)

V=V.exp [—

to read

_ = N ‘ 1 - K+I + O e2 17
4 V;IIBXP[ K+1( )] (€") an
By following steps similar to those detailed in Appendix 1, one
may derive from this basic equation the corresponding ex-
pressions for the longitudinal and transversal velocities, # and

v, and the pressure p:

Longitudinal velocity ".‘=1‘(}= a + Nm" [1 _ K(:?: :
(K-li-;fN " ) (;:; ﬂz)]+0(s}).(18)
Transversal Vclocu:-y u= [_’; = + N Ve [1 _ KE_: 1
(‘f% - 'fl”“) - % (; : x)] + OE) 19
Pressure p —:’-’: =cos @(1 — 1)
E&%g%: (1 =™ + 0@ .

The Boussinesq equations corresponding to these velocity
and pressure distributionis can now be developed. (Here B =
momentum correction coefficient, defined in Appendix IV. No-
tation.)

2
K+2+2N

| v \]_, (LN )
'[1+N(2+K+2+N)] E'(3+N)}+O(£) @1)

M cos¢ Ut 2
Momentum = — = + 8 {I Eo[(
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RS e

The variation of the mean energy and momentum with dis-
tance x are assumed to be represented by the usual relations
valid for quasi-paratlel flow.

. dE dM
7 _ E;=S0_Sf; z:h(S.,—.S})

Energy:%:wscp-i- B%{l

_ 12N
K+2+2N 22)

(23a,b)

In these relanons S, = gradient of energy line; and S, = bottom
slope.

Integration of Boussinesq Equations, Calculation of
Energy, and Momentum Change in Regions with
Significant Pressure Gradient

One may use the extended energy equation (234) to calcu-
late the surface profile of the undular jump. This computation
is complicated by the peculiar characteristics of the boundary
layer development in the undular jump. Considering the profile
between the upsiream section and the first crest [Fig. 9(a)],
one can see that the boundary layer in this zone has an adverse
pressure gradient, and for the initial Froude numbers greater
than 1.2 shock waves originating from the side walls of the

channel will be present. The experimental values of the trans-
versal velocity distribution exponent N .in (17) increase in
magnitude in this region from about N = 0.12 at the section
upstream to N = 0.5 at the rest. These are typical conditions
for boundary layers approachmg or reaching separation. As
discussed in the previous section, the effect of boundary-layer
thickening (if the upstream flow was undeveloped) and the
onset of the shock waves on the sidewalls led to a considerable
increase in the effective drag on the channel boundary, with
the consequent reduction in the longitudinal energy and mo-
mentum. The combination of these two effects is particalarly
evident in the region before the first crest. Beyond this point
the Tocal Froude number decreases to well below its original
upstream valtue, with the result that the drag-enhancing effect
of the shock waves is much diminished.

The calculation of the frictional effects under the undular
jurap is a fairly complex problem. There are, in fact, very few
studies of open-channel flow friction and velocity distribution
with nonuniform characteristics. The recent work of Kironoto
and Graf (1994, 1995), Seng and Graf (1996), and Dunbabin
(1996) are most noteworthy exceptions. However, the degree
of flow nonuniformity in experimenis by Graf and coworkers
is much smaller than that encountered in the undular jump (as
seen in the value of the Coles wake parameter Il in Fig. 6),
50 not a great deal of information from these studies can be
incorporated in the present calculation of the friction charac-
teristics of the flow under the undular jump. The most prom-
ising solution seems to be the application of a method used in
the calculation of boundary layers with pressure gradients.

Among the wide variety of available methods, the extremely
simple method developed by Furuya and Nakamura (1968) has
been shown (Kline et al, 1968) to provide good results under
a variety of pressure gradients. The method is aftractive in the
context of the present investigation, because it also uses as its
basis the power law for velocity distribution in the wall region
of the flow. Furuya and Nakamura showed that this replace-
ment of the more widely accepted logarithmic vcloc1ty distri-
bution works well provided that the boundary layer is not tco
close to separation, or what would be equivalent, that the
shape parameter H = 84/0 is kept below 2. In this relation 3y
= displacement thickness; and § = momentum thickness of the
boundary layer. This limitation constrains the applicability of
the method, limiting the initial Froude number to a value of
F,=<14-

In comparison with other methods, the Furuya and Naka-
mura’s method appears exceptionally attractive because it re-
quires only two very simple inputs: the value of the parameters
6 and C,= (fRYU/U,..,)" at the starting point of the calcula-
tions. Also, the structure of the method is such that it can be
easily incorporated into the step-by-step numerical calculation
using the extended energy equation. In contrast, other bound-
ary-layer calculation procedures may require data that is im-
possible or inconvenient to supply for engineering computa-
tions such as integral parameters related to turbulence,
entrainment parameters, or the dissipation integral.

It may be noted that Furuya and Nakamura’s method also
has a disadvantage: The calculation of the nondimensional
friction parameter C; under the undular jump has the added
complication of a spatially oscillating but time-steady pressure
field, Under this circumstance, the boundary layer needs some
time to adjust to the pressure field—its “history’’ is im-
portant—and simple methods such as the one advocated here
might not have enough adjustable parameters to adequately
reflect this condition. However, because few, if any, boundary-
layer computational methods have been tested under these ex-
acting conditions, the Furuya and Nakamura method’s advan-
tages of simplicity of programming and good performance
outweigh the possible disadvantages. Some details of the
method are shown in Appendix II.
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Another limitation of the application of the method is that
the initial Froude number should be one with at best incipient
formation of shock waves, since shock waves® contribution to
the energy dissipation is not taken into account in the integra-
tion of the Boussinesg equations. These limitations restrict the

application of Furuya and Nakamura’s method of calculation
of boundary friction to undular jumps of types A and those in
the Iower part of the B bracket.

Numerical Integration of the Extended Energy
Equation

The system of energy conservation equations, (21) and
(23a), was integrated numerically using Hamming's third or-
der method (Hammmg 1962) to determine the profile k = h(x)
of the undular jump. The boundary conditions for this case
were set as follows: For a given initial Froude number F,, the
initial depth A, of the supercnucal flow was calculated from
the expression A/y, = 3. and the initial surface slope of the
flow was set to an arbntrary positive value of &' = 0.001 to
0.01 to reflect the perturbation of the supercritical flow by the
downstream control. It was found that the numerical magni-
tude of the starting value for A’ had negligible effect on sub-
sequent results—different choices of 4’ only slightly altered
the distance between the upstream section and the first crest
of the profile, while the depths and wavelengths remained un-
altered. An integration using the momentum equation gave
substantially similar results.

The relation between the exponent N of the power and the
friction factor of the channel for a zero pressure gradient or
small negative pressure gradient has been discussed by Chen
(1990), who deduced from a simple integration of the velocity

profile that
1
N== \/g (24)

where k = Von Karman’s constant, with a magnitude close to
0.4. The measured values of fin Chanson's (1993) experiments
indicate that N has an initial value close to 0.125 in most
experiments. ’

RESULTS FROM THEORETICAL MODEL OF FLOW

It must be noted that the characteristics of the undular jumps
are strongly dependent on the slope and roughness of the chan-
nel. Therefore, one must be very careful in comparing exper-
iments from diverse sources, where the rate of change of mo-
‘mentum and energy may have been quite different. To present
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FiG. 10. Depths at First Crest, Inflection Point, and First
Trough as Functions of Froude Number Calculated from Present
Theory for Condition of Constant Downstream Energy or Mo-
mentum (Equilibrium Undular Jumps)
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the main theoretical results it is convenient to define an ideal
situation where the slope of the channel is such that the energy
{or momentum) increases very slowly or remains constant in
the region beyond the first crest. A decrease of either E or M
beyond certain limits will collapse the numerical calculations,
because no flows are possible below a value of Efy, or My,
equal to 1.5, Some geometrical characteristics for the undular
jump in terms of the initial Froude number for this idealized
condition are given in Fig. 10, which describes the calculated
depths at the first crest, first trough, and inflection point. As a
comparison, the crest depth for the solitary wave (Boussinesq
1871) and for the conjugate depth of the conventional hydrau-
lic jump have been added. The height of the first crest is close
to the height of the solitary wave for smaller Fronde numbers;
the same similarity can be found between the inflection point
depth and the conjugate depth of the normal hydraulic jump
(Fig. 11).

_ Fig. 12 details the variation of the first-wave amplitude and
Fig. 13 details that of the first waveletigth. Both figures include
a companson with data from recent experiments and with the
expressions suggested by Fawer (1973) and Andersen (1978).
It may be noted that the theoretical expression for the ampli-
tude seems to constitute a limit toward which the experiments
tend as the agpect ratio of the flow tends to zero.

Limitation of Theory

The main assumption in the derivation of the theoretical
model was that the curvature and slope were moderate, so that
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the .squarés and higher powers of the parameters g, and g
could be taken as small in comparison with unity. From Fig.
12 it can be seen that the mean value of the curvature param-
eter == 0.3 when F, = 1.4. Its square is then much smaller than
unity, The mean value of the slope parameter € remains
smaller still and is less signification. This limit, Fy < 1.4, is
also close to the value at which the waves at the first crest

break, a limit that depends mainly on the aspect ration, y./W,
of the channel. For an infinitely wide channel this limit is close
to Fy = 2, but a value representative of the present experiments
is closer to Fy = 1.4. Tt is possible that the validity of the
theory extends slightly beyond this value, since outside a nar-
row region around the crests of the undular jump the curvature
is well below the limit of 0.3, The present theory also shows
that at an initial Froude number of approximately 1.65, the
surface velocity at the crest becomes a negative, incipient con-
dition for the formation of a surface roiler.

Figs. 14-17 contain a comparison with the measured cen-
terline velocity, energy, and pressure distributions. Figs. 14 and
15 describe the conditions of run TJ1 (initial Froude number
Fo = 1.27) for the first crest and first trough locations. Figs.
16 and 17 portray these results at the same sections for run
TI7 (initial Froude number 1.48). In this comparison, the ex-
ponent K in (11) has been taken equal to 1.0. Numerical ex-
perimentation showed little difference in the output for values
of K ranging from 0.5 to 2. It is evident from the results of
Figs. 13-16 that the agreement between theory and experi-
ments deteriorates as Froude numbers approach and exceed
1.5, as was to be expected considering the assumptions of
moderate curvature and two-dimensionality made in the deri-
vation of the theory.

CONCLUSIONS
Additional experiments to supplement the relatively meager
collection of data have been performed and disclose the geo-
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metrical and kinematical characteristics of the undular jump.
These experiments confirm the three-dimensional aspects of
the undular jump, differentiating it from the similar phenom-
enon of the undular bore, a traveling train of cnoidal waves
with which it shares some external characteristics, The undular
jump shows strong side-wall effects, caused by the rapid
- growth of the wall boundary layer, and the formation of shock
waves. The mechanism of shock-wave formation is explained

in terms of wall boundary layer separation. The interaction of -

wall boundary layers with the shock waves is considerable
even with a channel width te flow depth ratio of 7:1. The
consequence is a marked rearrangement, with respect to a two-
dimensional flow, of the transversal depth profile and velocity
distribution, as well as other features of this phenomenon. In
particular, one may observe a noticeable increase in the cen-
terline discharge. )

The velocity distribution in the region before the first crest
is shown to contain a strong wake component, the magnitude
of which is linked to the level of the adverse pressure gradient.
These profiles are quite similar to those in boundary layers
nearing separation and point to the wide variation of bottom
shear between the beginning and the crest section of the
boundary layer.

A two-dimensional Boussinesq equation modified for
boundary shear effects was developed to predict the major fea-
tures of the undular jump at F, less than 1.4 and the depen-
dence of the jump characteristics on the local values of slope
and roughness of the channel. The model presented here is
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restricted to moderate curvatures by the needs for mathemat-
ical simplicity and is able to predict with fair accuracy the
depth variation and the influence of the surface curvature and
slope on the velocity, energy, and pressure distributions. 'The
theory also predicts the wavelength and amplitude of the un-
dular jump, up to its limit of validity, which is restricted to
type A jumps and the lower range of type B jumps.

It would be difficult to justify a more complex two-dimen-
sional model in light of the surface perturbations caused by
the oblique waves and the wave-breaking at crests at Froude
numbers greater than 1.4. It is hoped that future work in this
subject can be extended to a more realistic three-dimensional
model, where special attention is given fo the shock-wave gen-
eration process and to quantifying the energy dissipation as-
sociated with the oblique jumps.

APPENDIX 1. DEVELOPMENT OF INVISCID
BOUSSINESQ EQUATION

A streamline centered s-n system of reference is defined in
Fig. 9(b). According to Rouse (1938), the inviscid flow equa-
tions of momentum conservation in this system are

av 14 az
==t = @3)
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where V = streamline velocity; and R = local radius of cur-
vature. Integrating (25) along 2 streamline gives the well-
known result .

H(m) =§ + % + gz @n

For an irrotational flow the energy, H(n), is constant. Elimi-
nating the pressure gradient between (25) and (26), one obtains

ST = 28)

Integrating (28) along the arc PS yields

v “dn |
in (Tf:) = f -E 29

where n, and r are the arcs SB and PB in Fig. 9(b). Cartesian
coordinates x and y are usually preferred, so the element of
arc dn is teplaced by its equivalent, —dylcos 6.

W__[_# |

To proceed further, it is necessary {o resOrt to some as-
sumption regarding the variation of the radivs of curvature R
with the depth y. An assumption similar to that of Fawer
(1937) links these variables by the relation '

1 1 ___1___ . 1 x
Rcos® R,cos o (R, cos 8, R,cos 0,,) LIS
where n = y/h. This relation provides a continuous variation
between the boundary values of the radius of curvature. The
subscripts b and s refer to bottom and surface conditions and
K is a positive constant of the order of unity. If the bottom is
flat (31) simplifies to

_._1_;_ 1 K (32)
Roos® R,cos6, |

Substituting (32) into (30) and integrating, the streamline ve-
locity V' is

- [, h — K+1
v=V. °"P[ K+ 1R,cos 8, a=m )] @3
Astan 8, = &' and R, = (1 + Ry, (33) is equivalent to
- B ok _
V=V, exP[ T+ 1 ad-m )] -(34)

where the parameter € stands for Bi'I(t + R'®) a term closely
related to the relative curvature of the surface. )

To obtain the longitudinal and transversal components of
the velocity, the variation of the angle of inclination @ with.y
is now defined by assuming, as Boussinesq did, that the arc
BS [Fig. 9(b)] can be taken to be an arc of circle; then atl the
tangents to the streamlines meet at a common point, F. Simple
geometry shows that the angle © is specified by

sin 9 = sin 9, (i—) = \/;::%' cos 8= 41 — & (%) (35a,b)

Here € = A1 + 2.

The longitudinal velocity u = V cos @ is now obtained by
combining (34) and (355). The resulting expression is approx-
imated by expanding in series the exponential and square root
functions that appear in these equations and neglecting the
term O(e?). This is equivalent to assuming that the curvature
is moderate everywhere.

Lo

S —

_ e _ 8o
u_v,(l et 2n)+0(t-:2) (36)

The velocity, v, to the same order of approximation, is

o=V sin 8 = V,Vem [1 &

_ B 4 oE 2,
K+l(1 "])]"’O(E) 3N

The mean horizontal velocity, U/ = g/h, is now

", R
=-1—j VdnsJ’ v-#"'—mv,(l ———5°—+-S-‘) + 0@
,  ©os

n Js o K+2 6
(38)
Variable V, in terms of U to same order is
€o € 2
= + -=]+
v,=U (1 X+2 6) (") 39
Then the ratio w/U is defined by
u_ _ €o 1 .0 E!_ 2
U_{l K+l[(K+2) n ] g G T + 0E)
(40)
and v/U is

_ e [ 1 e]ow .
U‘\/F‘_‘”"{1 K+1[(K+2) " ] 6}+0(£) “n

The last expression is of higher order of approximation than
(40). ‘

Pressure Distribution

The variation of p along the arc PS [Fig. 9(b)] foilows from
the integration of (26) with the boundary condition that p = 0
at the surface. In Cartesian coordinates -

' 13

p = —y)kos ¢ + pJ

¥y

VZ
Rcos @

dy “2)

By inserting in (42) the approximations for the radius of cur-
vature and V, one obtains

X+ 1) a-a"h+oE® 3

P ; u? €0
vh a ! ® gh (

Extended Energy and Momentum Equations

The mean energy £ is the average through depth. The mo-
mentum M of the flow represents the longitudinal momentum
plus pressure force in that direction

R h
_ 1 z
Enagy:E:lI Edy=< ycos¢+£+—~v dy (44a)
h k Jo Y 2

o

Momentum = M = J (g v 5":’!—52) dn  (44b)
0

Substitution of the equations (34), (40), and (41) for the
streamline velocity, longitudinal and mean longitudinal veloc-
ity, and pressure into (444) and (44b) gives

- v & _&
.12__;”:o.~:q;+2g[1+K+2 3]+0(a’) 45)

and

_ B v £
M=—+—1]1+ + O
S 2 g [1 K+ 2] o) “6)

These equations, as could be expected from the similarity
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of their basic assumptions, are almost identical to those sug-
gested by Serre (1953), Matthew (1963), and Hager and Hutter
(1984) if the curvature exponent K is taken equal to 1, but the
degree of approximation in terms of the curvature and slope
parameters is clearly stated.

APPENDIX Il. FURUYA AND NAKAMURA'S METHOD
FOR CALCULATION OF BOUNDARY LAYER'S
FRICTIONAL EFFECTS

This method is a momentum integral method, supplemented
by an equation for the momentum thickness within the bound-
ary layer. It has been slightly modified to suit the character-
istics of a free-surface flow with rather large adverse pressure
gradients, The thickness of the boundary layer in this appli-
cation has been assumed to be equal to the depth of the flow;
therefore, the flow at the beginning of the jump must be well-
developed. The velocity profile between the solid boundary
and the momentum thickness 6 < A is assumed to follow a
power law similar to that in (164). Faruya and Nakamura use
as a special parameter the ratio of the boundary layer velocity
at y = 0 to the maximum velocity at y = A. This parameier, K
= u,/U,, is related here to the shape parameter H = 8,/6 of
the boundary layer by the empirical relation

H=[13+ 1.3(0.7 — K) + 3(0.7 — K" 47

Ludwieg and Tillman (1949) developed a useful expression
for the skin friction coefficient (C;/2) = (r,/pUZ), which in-
corporates the shape parameter H

C U8
“2“ = 0.123R; % X 107%™, R, = - (48)

Here U, is the maximum velocity within the cross -section.
The procedure of calculation with this method consists of in-

tegrating step by step the differential equations for 8 and K.

The first is Yon Karman's momentum integral equation

== (H+2)+%- (49)

The second is a transport equation for the shape parameter K,
derived by integrating the x momentum eguation from y = 0
toy=6.-

dK 1-K

E—l%m[r'{"Ol]S(ﬁff—K}] (50

‘Here I' = (8/U)dU./dx)RY™ is Buri’s shape factor (Schlicht-

ing 1960). The empirical coefficient A has been given here a
value of A = 1.5 to provide additional computational stability.
The maximum velocity U, =~ (1 + N)g/h, where N is the
exponent in the power law velocity distribution, given by
Spence’s (1956) relation N = (H — 1)/2.
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¥. = critical flow depth (m) for a rectangular channel: y, =
APPENDIX IV. NOTATION ,bw/qz—, ‘% o data (ot ;
Howi mbols are used in this - z = elevation from m (m n positive upward;
The following symbo pape B = Bousszinesq momentum correction coefficient B = [ &
A = wave amplitude (m); dA/U*A; also dimensionless pressure gradient defined
D = drag force (N); by B = (gh/iupXdh/dx);
E = specific energy (m); AE = variation in the specific energy of flow (m);
E = mean specific energy (m); AH = energy dissipation at center line (m);
(E,)c. = mean specific energy (m) on centerline; Ax = increment in x dl{ectlﬂﬂ (rn);_
F, = Froude number defined as F = ¢/1/gh3; 8 = boundary layer thickness (m);
F, = upstream Froude number F, = g\/gh%; 8, = boundary layet separation thickness = f7 (1 — w/l.)
# = Froude number characterizing appearance of a small dy , o
“cockscomb’’ roller at top of first wave crest; K = Von Karman’s velocity distribution parameter;
f = Darcy friction factor; M = dimensionless vertical coordma.te n =y
g = gravitational constant: g = 9.803 m/s? in Hobart, Aus- 6 = angle of inclination of streamiine with channel (deg.);
tralia; also momentum thickness in boundary layer =
H = total head (m), Jo w/U. [1 = (U] dy;
H = shape parameter of boundary layer, H = 5*/6; 0* = angle between lateral shock waves and side walls at
h = local surface depth (m), measured perpendicular to start of laateral shock waves;
channel; Yy = pg (Nfm’y; . ,
ho = flow depth (m), measured immediately upstream of hy- I = amplitude parameter in Coles’ law of the wake;
draulic jump; p = water density (kg/m’),
B = dhidx T, = bottom shear stress (N/m°); and
W = d*hidd; ¢ = channél slope angle measured with respect to the hori-
K = exponent in streamline radius of curvature distribution; zontal (deg.).
L = wave length (m);
M = specific momentum of flow (kg/s®); Subscripts
M, = Mach number in compressible flow; , = i .
N = exponent of power law velocity distribution; g - Svl':la;neu!ol‘)log_g?m,
n = length of arc normal to a streamline (m); C = wave crest. '
Qp f g:s;geaz:?’s}_ CL = on flume centerline;
g = discharge per unit width (rn:Is); _:, : 2;1233’;:? poing
()L = discharge per unit width (m%s) on centerline; - - y
R = local radius o curvature of streamline (in); (IJ _ ggg ggﬂisons tépstream of h)f(c}lra:hmij]lump d
A = Reynold’s number; * = start of lamrzlnih ovlb;ns a ot By € Jump; an
s = length of arc along streamline (m); - ock waves.
Sz = bottom slope; - .
S, = slope of energy line; Abbreviations
1 = longitudinal velocity, parallel to channel bottom (mls), BL = boundary layer;
U, = shear velocity u, = \/1./p, (In/s); SW = location of start of lateral shock waves;
U = mean flow velocity, U = Q/A (m/s); . U/S = upstréam flow; '
Upe = maximum longitudinal velocity on centerline (m/s); 1C = first wave crest; and
Uq, = mean longitudinal velocity on centerline (m/s); 1B = first wave trough.
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