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Momentum Considerations in Hydraulic Jumps and Bores
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Abstract: A hydraulic jump is the turbulent transition from a high velocity into a slower flow. A related process is the hydraulic jump in
translation. The application of the equations of conservation of mass and momentum in their integral form yields a series of relationships
between the flow properties in front of and behind the jump. The effects of the cross-sectional shape and bed friction are investigated. The
effect of the flow resistance yields a smaller ratio of conjugate cross-section areas for a given Froude number. The solutions are tested with
some field measurements of tidal bores in natural channels, illustrating the range of cross-sectional properties in natural systems and irregular
channels. DOI: 10.1061/(ASCE)IR.1943-4774.0000409. © 2012 American Society of Civil Engineers.
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Introduction

A hydraulic jump is the sudden transition from a high velocity flow
into a slower motion. A related process is the tidal bore and positive
surge, also called hydraulic jump in translation (Fig. 1). In all cases,
the flow is characterized by a sudden rise in free-surface elevation
and a discontinuity of the pressure and velocity fields. In the system
of reference following the jump front, the integral form of the equa-
tions of conservation of mass and momentum gives a series of re-
lationships between the flow properties in front of and behind the
bore (Rayleigh 1914; Henderson 1966; Chow 1973; Liggett 1994):

ðV1 þ UÞA1 ¼ ðV2 þ UÞA2 ð1Þ

ρðV1 þ UÞA1½β1ðV1 þ UÞ � β2ðV2 þ UÞ�

¼
RR
A2

PdA�
RR
A1

PdAþ Ffric �W sin θ ð2Þ

where V = flow velocity; U = bore celerity for an observer standing
on the bank (Fig. 1); ρ = water density; g = gravity acceleration;
A = channel cross-sectional area measured perpendicular to the
main flow direction; β = momentum correction coefficient;
P = pressure; the subscript 1 = the initial flow conditions; the sub-
script 2 = the flow conditions immediately after the jump; Ffric =
flow resistance force; W = weight force; and θ = angle between the
bed slope and horizontal. Eqs. (1) and (2) are valid for the stationary
jumps (U ¼ 0), tidal bores (U > 0), and positive surges traveling
downstream (U < 0).

For a rectangular horizontal channel in absence of friction, a
classical result is the Bélanger equation (Bélanger 1841; Chanson
2009)

d2
d1

¼ 1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8F2

1

q
� 1

�
ð3Þ

where d = flow depth; F1 = upstream Froude number defined as
V1∕

ffiffiffiffiffiffiffi
gd1

p
for a steady jump and ðV1 þ UÞ∕ ffiffiffiffiffiffiffi

gd1
p

for a bore. In
open channel hydraulics, d2 and d1 are called the conjugate depths.
Following Rayleigh (1914) and Lamb (1932), Lighthill (1978)
expanded the original development of Bélanger (1841) for a non-
rectangular channel, assuming implicitly small variations of the
free-surface width.

In this study, the application of the momentum principle in its
integral form is revisited for a hydraulic jump in an irregular chan-
nel including natural systems. The effects of the cross-sectional
shape and bed friction are developed. The application to tidal bore
propagation in wide shallow-water bays is discussed on the basis of
recent detailed field observations.

Basic Solutions

Neglecting the flow resistance (Ffric ¼ 0), the effect of the velocity
distribution (β1 ¼ β2 ¼ 1) and for a flat horizontal prismatic chan-
nel, the momentum principle [Eq. (2)] becomes

ρðV1 þ UÞA1ðV1 � V2Þ ¼
RR
A2

PdA�
RR
A1

PdA ð4Þ

The difference in pressure forces may be derived assuming a hydro-
static pressure distribution in front of and behind the hydraulic
jump. The net pressure force resultant consists of the increase of
pressure ρgðd2 � d1Þ applied to the initial flow cross section A1
plus the pressure force on the area ΔA ¼ A2 � A1:

Z
A2

A1

Z
ρgðd2 � yÞdA ¼ 1

2
ρgðd2 � d1Þ2B0 ð5Þ

where y = distance normal to the bed; d1 and d2 = initial and new
flow depths (Fig. 1); and B0 = a characteristic free-surface width.
Note that B1 < B0 < B2 where B1 and B2 are the upstream and
downstream free-surface width (Fig. 1). Another characteristic
free-surface width B is defined as

Z
A2

A1

Z
dA ¼ A2 � A1 ¼ ðd2 � d1ÞB ð6Þ
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Because the continuity equation may be rewritten

ðV1 � V2Þ ¼ ðV1 þ UÞA2 � A1

A2
ð7Þ

the combination of the continuity and momentum principle gives a
series of relationships between the flow properties in front of and
behind the jump:

ðU þ V1Þ2 ¼
1
2
gA2

A1B

��
2� B0

B

�
A1 þ

B0

B
A2

�
ð8Þ

ðV1 � V2Þ2 ¼
1
2
gðA2 � A1Þ2

BA1A2

��
2� B0

B

�
A1 þ

B0

B
A2

�
ð9Þ

Eq. (8) may be expressed in dimensionless terms:

F2
1 ¼

ðU þ V1Þ2
g A1
B1

¼ 1
2
A2

A1

B1

B

��
2� B0

B

�
þ B0

B
A2

A1

�
ð10Þ

Eq. (10) gives an analytical solution of the square of the Froude
number (F2

1) as a function of the cross-sectional ratio A2∕A1, the
ratio B0∕B, and the ratio B1∕B. The Froude number definition for
an irregular channel F1 ¼ ðV1 þ UÞ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gA1∕B1

p
is identical to the

expression derived from energy considerations (Henderson 1966;
Chanson 2004), but Eq. (10) is based on momentum considera-
tions. The effects of the celerity (U) are linked with the initial flow
conditions, i.e., from nil for a stationary hydraulic jump (U ¼ 0) to
the full extent for a fluid initially at rest (V1 ¼ 0).

Eq. (10) may be rewritten in the form of the ratio of conjugate
cross-section areas A2∕A1 as a function of the upstream Froude
number F1:

A2

A1
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2� B0

B

�
2 þ 8 B0∕B

B1∕B
F2
1

q
� �

2� B0
B

�
B0
B

ð11Þ

that is valid for any hydraulic jump in an irregular channel. The
effects of the channel cross-sectional shape are accounted for with
the ratios B0∕B and B1∕B.

Particular Case B ≈ B0 ≈ B1

In some particular situations, the approximation B≈ B0 ≈ B1 may
hold. Such cases include a rectangular channel or a channel cross-
sectional shape with parallel walls next to the waterline. For
B≈ B0 ≈ B1, the combination of the continuity and momentum
principles may be simplified into

ðU þ V1Þ2 ¼
1
2
g
A1

ðA1 þ A2ÞA2

B
ð12Þ

ðV1 � V2Þ2 ¼
1
2
gðA1 þ A2ÞðA2 � A1Þ2

BA1A2
ð13Þ

The solution [Eqs. (11) and (13)] is a mere rewriting of the
development of Lighthill (1978). Eq. (12) may be expressed in
a dimensionless form as

A2

A1
¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8F2

1

q
� 1

�
ð14Þ

Eq. (14) has the same form as Eq. (3), and it yields to the
Bélanger equation [Eq. (3)] for a rectangular horizontal channel
in absence of friction.

Effets of Flow Resistance

In presence of some flow resistance, the momentum principle for a
flat horizontal channel may be transformed. The combination of the
continuity and momentum principle gives then

ðU þ V1Þ2 ¼
1
2
gA2

A1B

��
2� B0

B

�
A1 þ

B0

B
A2

�
þ A2

A2 � A1

Ffric

ρA1
ð15Þ

ðV1 � V2Þ2 ¼
1
2
gðA2 � A1Þ2

BA1A2

��
2� B0

B

�
A1 þ

B0

B
A2

�

þ A2

A2 � A1

Ffric

ρg A2
1
B

ð16Þ

In dimensionless terms, Eq. (15) may be transformed into

F2
1 ¼

1
2
A2

A1

B1

B

��
2� B0

B

�
þ B0

B
A2

A1

�
þ A2

A2 � A1

Ffric

ρg A2
1
B

ð17Þ

Eq. (17) expresses the relationship between the upstream Froude
number and the ratio of the conjugate cross-section areas A2∕A1
taking into account the flow resistance force and irregular cross-
sectional shape.

Application

A number of prototype observations were carefully documented
including with detailed bathymetric conditions. The reanalyzed
data are summarized in Table 1. One location (Dee River) was
an artificial channel section, whereas all others were natural sys-
tems. Fig. 2 shows the Sélune River channel during one field study,
illustrating the wide, irregular channel cross section. The data in-
dicated that the approximation B≈ B0 ≈ B1 held for the Dee River
but not for the other irregular channels including the Sélune River

Fig. 1. Definition sketch of a hydraulic jump in a natural channel
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channel (Table 1). In these irregular channels, the data yielded
consistently

B1 < B0 < B < B2 ð18Þ

as shown in Table 1 (columns 9, 12, 13, and 14). The upstream
Froude number was estimated from the velocity measurements
(column 5) and the data are summarized in Fig. 3. Fig. 3 presents
the upstream Froude number as a function of the ratio of conjugate
cross-section areas. The data are compared with Eqs. (11) and (14)
and the solution of the Bélanger equation [Eq. (3)]. The results
highlighted, first, the effects of the irregular cross section. The
Bélanger equation based on the assumption of a rectangular chan-
nel is inappropriate in an irregular channel, as illustrated by the
difference between Eqs. (3) and (11). The effects of the irregular
channel cross section increase with increasing Froude number
and bore height Δd. Second, the field data were predicted reason-
ably well by Eq. (11) except for the last data point (Sélune River,
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Fig. 2. Tidal bore of the Sélune River (France) on 24 September 2010;
bore propagation from the right to the left; in the background the bore
expanding over the sand shoals
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Fig. 3. Relationship between Froude number and ratio of conjugate
cross-section areas; comparison between field observations and the
solutions of Eqs. (3), (11), and (14)
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25 Sept. 2010). Third, the upstream Froude number definition F1 ¼
ðV1 þ UÞ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gA1∕B1

p
may differ significantly to the traditional

approximation ðV1 þ UÞ∕ ffiffiffiffiffiffiffi
gd1

p
. For the field data in natural irregu-

lar channels (Table 1), the differences ranged from 12 to 74%.

Effects of Bed Friction

The effects of bed friction on the hydraulic jump properties were
tested on irregular channels. Fig. 4 presents the upstream Froude
number as a function of ratio of the conjugate crosssection areas
A2∕A1 for values of B0∕B and B1∕B corresponding to the bathymet-
ric conditions of the Garonne River and Sélune River (Table 1).

For a given Froude number, the theoretical considerations imply
a smaller ratio of the conjugate cross-section areas A2∕A1 hence,
a smaller ratio of conjugate depths d2∕d1, with increasing flow re-
sistance to satisfy momentum considerations (Fig. 4). Although the
finding is intuitive and consistent with physical data in rectangular
channels (Leutheusser and Schiller 1975; Pagliara et al. 2008),
Eq. (17) is general and applies to any cross-sectional shape. How-
ever, the effects of flow resistance decrease with increasing Froude
number, becoming small for upstream Froude numbers greater than
2 to 3 depending on the cross-sectional properties (Fig. 4).

Conclusion

The application of the equations of conservation of mass and
momentum in their integral form is revisited for a hydraulic jump
in an irregular channel. Some complete solutions are developed
expressing the ratio of the conjugate cross-section areas as a func-
tion of the upstream Froude number F1 ¼ ðV1 þ UÞ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gA1∕B1

p
for

a range of channel cross sections. The effects of the flow resistance
are observed to decrease the ratio of conjugate depths for a given
Froude number. The solutions were tested with some field measure-
ments in natural irregular channels. The results illustrate that the
Bélanger equation is not applicable and that the cross-sectional
properties of irregular channels have a significant impact on the
flow properties.

Notation

The following symbols are used in this paper:
A = flow cross-section area (m2);
B = (1) free-surface width (m); (2) characteristic free-surface

width (m) [Eq. (7)];
B0 = characteristic free-surface width (m) [Eq. (5)];
d = flow depth;

Ffric = flow resistance (N);
F = Froude number: for an irregular channel:

F ¼ ðV þ UÞ∕ ffiffiffiffiffiffiffiffiffiffiffi
gA∕B

p
;

g = gravity acceleration (m∕s2);
P = pressure (Pa);
U = bore celerity (m∕s) positive upstream;
V = flow velocity (m∕s) positive downstream;
W = weight force (N);
y = vertical elevation (m) above the bed;
θ = angle between bed slope and horizontal, positive

downwards; and
ρ = water density (kg∕m3).

Subscripts

1 = upstream or initial flow conditions; and
2 = downstream or new flow conditions.
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Fig. 4. Effects of the flow resistance on the solution of the momentum
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