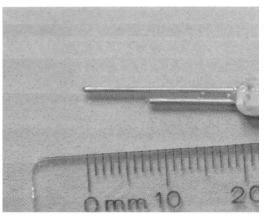
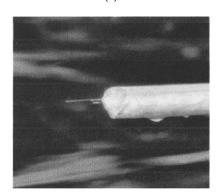
VOLUME 75, NUMBER 1

LETTERS

Comments on "Fiber optic reflectometer for velocity and fraction ratio measurements in multiphase flows" [Rev. Sci. Instrum. 74, 3559 (2003)]


H. Chanson^{a)} Department of Civil Engineering, The University of Queensland, Brisbane QLD 4072, Australia (Received 7 August 2003; accepted 22 September 2003)
[DOI: 10.1063/1.1634360]

The writers presented a challenging and detailed technique to deduce velocity measurements from a single-tip optical fiber probe in air–water flows. The discusser congratulates them for this major advance and he wishes to add some pertinent comments on air–water flow velocity measurements with single- and double-tip probe systems.


Phase-detection intrusive probes have been used for more than four decades. Since the needle probe was developed by Bankoff,^{1,2} the designs have been refined. Although the first designs were resistivity probes, both optical fiber and resistivity probe systems are commonly used today. Figure 1(A) shows a double-tip resistivity probe with an inner electrode (platinum) of 0.15 mm diam used for field measurements, while Fig. 1(B) presents a laboratory probe with a 0.025 mm diam inner electrode. The latter design [Fig. 1(B)] has been used successfully for more than ten years with flow velocities up to 9 m/s.^{3–6} As such, resistivity probe sensors can be much smaller than optical fiber probe tips.

With phase-detection intrusive probes, velocity measurements may be performed using the writers' technique or using a double-tip probe system. Note that double-tip probe system signals may be analyzed using two methods: the analysis of individual bubbles successively impacting both sensors, or a cross-correlation analysis.^{7,8} Table I summarizes the comparative advantages of each technique. In summary, the writers' technique has the main advantage of probe simplicity, while dual-tip probe measurement techniques require the simplest data acquisition system and the least postprocessing. The latter was recently extended to include turbulence intensity, bubble size and bubble cluster outputs.⁶

Finally, two studies attempted unsuccessfully to measure interfacial velocity from the signal rise time with single-tip resistivity probes.^{9,10} It was suggested that the drying process on the probe sensor was strongly affected by the presence of

(a)

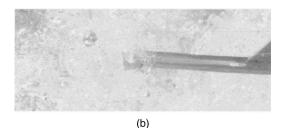


FIG. 1. Photographs of double-tip resistivity probes: (a) Probe for field measurements (inner electrode \emptyset =0.15 mm); and (b) probe for laboratory measurements (inner electrode \emptyset =0.025 mm). (Top) above water; (bottom) in air–water flows (flow from left to right, V~3.5 m/s).

0034-6748/2004/75(1)/284/2/\$22.00

284

^{a)}Electronic mail: h.chanson@uq.edu.au

TABLE I. Comparison of velocity measurement techniques.

		Double-tip j			
Feature (1)	Chang <i>et al.</i> ^a (2)	Single event analysis (3)	Cross-correlation analysis (4)	Remarks (5)	
Probe	Single-tip optical fibre probe	double-tip resistivity/optical fibre probe	double-tip resistivity/optical fibre probe		
Scan rate	10 MHz	10 kHz	10 kHz	Typical values.	
Velocity measurement calculation	Time series analysis of individual bubble event	Individual bubble event analysis	Cross correlation		
Post- processing calculations	Very complicated	Complicated	Simple		
Remarks		Void fraction less than 20%	Void fractions between 0 and 1		

^aReference 12.

water impurities and by sensor shape irregularities, yielding a wide scatter of the calibration data.¹¹ It would be interesting to have the writers' thoughts on a possible application of their technique to resistivity probe measurements.¹²

1	L.	S.	Neal	and S	5. G.	Bankoff, An	1. Inst.	Chem.	J.	9 , 49	(1963).
---	----	----	------	-------	-------	-------------	----------	-------	----	---------------	---------

- ²L. S. Neal and S. G. Bankoff, Am. Inst. Chem. J. 11, 624 (1965).
- ³H. Chanson, Report No. CH46/95, Department of Civil Engineering, University of Queensland, Australia (1995), 368 pp.
- ⁴P. D. Cummings and H. Chanson, J. Fluids Eng. **119**, 603 (1997).
- ⁵H. Chanson and T. Brattberg, Int. J. Multiphase Flow 26, 583 (2000).
- ⁶H. Chanson and L. Toombes, Int. J. Multiphase Flow 27, 1737 (2002).
- ⁷C. Crowe, M. Sommerfield, and Y. Tsuji, *Multiphase Flows with Droplets and Particles* (CRC, Boca Raton, FL, 1998), 471 pp.
- ⁸H. Chanson, J. Hydraul. Eng. **128**, 252 (2002).
- ⁹K. J. Sene, Ph.D. thesis, Trinity College, Cambridge, U.K. (1984).
- ¹⁰P. D. Cummings, Ph.D. thesis, University of Queensland, Australia (1996).
- ¹¹P. D. Cummings, personal communication (1994).
- ¹²K. A. Chang, H. J. Lim, and C. B. Su, Rev. Sci. Instrum. 74, 3559 (2003).