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The Authors developed a state-of-the art review on
air–water flows in hydraulic structures. During major
floods, the operation of large hydraulic structures is
most often characterized and affected by self-aeration
(Chanson, 1997; Rao & Kobus, 1974;Wood, 1991). The
hydrodynamics of these large air–water flows presents
unique challenges with ultra-high-Reynolds numbers,
uncontrolled self-aeration and complicated multiphase
fluid–structure interactions (Chanson, 2013a; Novak
et al., 2007; Vischer & Hager, 1998). The free-surface
flows are characterized by ultra-high Reynolds num-
bers in excess of 108 to 109 (Figure 1) for which many
traditional design assumptions were never validated,
e.g. theMoody diagram. The absence of validation data
sets obtained in prototype structures is directly linked
to the implicit physical limitations of field observa-
tions including individual safety and restricted physical
access (Chanson, 2013a, 2024; Lin & Han, 2001).

In this discussion, some important issues with the
upscaling of air–water flows are addressed and field
observations of air–water flows in prototype hydraulic
structures are discussed, expanding on the work pre-
sented by the review.

Upscaling: from the laboratory to the
prototype

The hydraulic modelling of air–water flows may be
performed theoretically, physically and numerically. As
pointed out in the review paper, most previous studies
on air–water flows have been conducted in laboratories
at reduced scales. In free-surface flows, gravity effects
dominate and a Froude similarity is used (Hender-
son, 1966; Rouse, 1938). Further, when the same fluids
(i.e. air and water) are used in both model and pro-
totype, the Morton number remains invariant (Kobus,
1984). By applying a combined Morton and Froude
similarity, the difference in Reynolds numbers between
model and prototype accounts for potential scale effects
related to both viscous and capillary processes, since the

�-Vaschy-Buckingham theorem implies that theWeber
number is no longer relevant (Pfister&Chanson, 2014).

When dealing with small scale physical modelling
a critical question arises: what is the largest acceptable
geometry scaling ratio Lr, defined as the ratio of pro-
totype to model dimensions? Two seminal textbooks
on air–water flows recommended: Lr < 10 (Chan-
son, 1997; Wood, 1991). However, a detailed model-
prototype comparison of air-regulated siphon spillway
demonstrated that even a large-size physicalmodelwith
Lr = 5 failed to accurately predict the rating curve and
air entrainment rate observed in the prototype struc-
ture, indicating that “modelsmay givemisleading infor-
mation about full-scale behavior” (Ervine & Oliver,
1980). Importantly, any discussion on upscaling and
scale effects in air–water flows must be rigorous. The
notion of scale effects andmodel-prototype compliance
must be closely linked to the selection of the criterion
(or criteria) to assess scale affects (Chanson, 2009). It
has been known for decades that some air–water flow
properties are more affected by scale effects than others
(Chanson, 2009; Rao & Kobus, 1974; Wood, 1991). For
example, Estrella et al. (2022) analysed a broad range
of hydraulic and air–water flow properties in hydraulic
jumps with constant inflow Froude (Fr = 2.1) and
Morton numbers (Mo = 2.5× 10−11), but different
Reynolds numbers (7.75× 103 < Re < 3.05× 105), as
displayed in Figure 2. Ultimately, in line with the few
systematic comparisons available, these results con-
firmed that certain air–water properties (e.g. void frac-
tion and interfacial velocities) scale better than oth-
ers (e.g. bubble characteristics), which cannot be reli-
ably extrapolated from laboratory studies to full scale
without further investigation (Chanson, 2013a; Rao
& Kobus, 1974). Direct guidelines on what can be
obtained and what cannot be obtained with small-size
models were developed by Chanson and Chachereau
(2013, table 2), Wang and Chanson (2016, table 2)
and Estrella et al. (2022, table 2) for air–water flows
in hydraulic jumps, and Chanson and Gonzalez (2005,
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Figure 1. Hydraulic structure operations during major floods (photographs by Hubert Chanson). (a) Trevallyn Dam discharging
532m3 s–1 with Re = 2.0× 107 – photograph shutter speed: 1/250 s, aperture: f/6.3. (b) Hinze Dam spillway discharging 340m3 s–1

with Re = 1.1× 108 – photograph shutter speed: 1/500 s, aperture: f/5.6.

Figure 2. Hydraulic jumpswith Fr = 2.1 for different scales: (a) Re = 7.8·103; (b) Re = 6.3·104; (c) Re = 2.0·105 (after Estrella et al.
2022).

Figure 3. Air–water flows at hydraulic structures. (a) AviemoreDamspillway chute in operation –photograph shutter speed: 1/160 s,
aperture: f/5.6 (photograph provided by Meridian, New Zealand) (b) Chinchilla Weir discharging 161m3 s–1 with Re = 3× 106 –
photograph shutter speed: 1/8000 s, aperture: f/2.8 (photograph by Hubert Chanson).

p. 249) and Felder and Chanson (2017, table 4) for
self-aerated stepped chute flows.

A complete absence of scale effects is only observed
in air–water flows in prototype flow conditions, i.e.
at full-scale hydraulic structures. The importance of
field measurements has repeatedly been emphasized
by leading scholars (Chanson, 2013a; Kolkman, 1984;

Novak, 1984; Novak et al., 2010). The air–water flow
literature does include a number of seminal proto-
type data sets: at the Aviemore Dam spillway on the
air–water flow structure and air–water flow properties
(Cain & Wood, 1981; Keller, 1972) (Figure 3a); at the
Hinze Dam stepped spillway on the mechanisms of
self-aeration and energy dissipation (Chanson, 2013b,
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2022; Chanson & Hu, 2024) (Figure 1b); and at the
Chinchilla Weir converging chute on the velocity and
turbulence fields in the air–water flow region (Chanson
& Apelt, 2023) (Figure 3b). A few other prototype spill-
way tests were reported by Falvey (1982), Volkart and
Rutschman (1984), and Bai et al. (2021). Several papers
discussed the difficulties, intricacies and limitations of
field observations of air–water flows (Chanson & Shi,
2024; Jevdjevich & Levin, 1953;Michels & Lovely, 1953;
de Pinto et al., 1982), and the first author (HC) experi-
enced first-hand the practical difficulties of conducting
tests at Gold Creek Dam and Paradise Dam. The chal-
lenges cannot be ignored. However, it is of principal
importance that, whenever possible, any new develop-
ment in air–water flows must be validated against sem-
inal prototype data to gain a broad acceptance among
the industry.

Finally, in prototype hydraulic structures, the over-
flow often consists of a three-phase mix of water,
air and sediments (Bombardelli & Chanson, 2009,
2017; Chanson, 2013). During floods, the sediment
load is large and the multiphase gas–liquid–solid flows
are complex, with multi-level multi-phase interactions
(Balachandar & Eaton, 2010; Hanratty et al., 2003;
Prosperetti & Tryggvason, 2009). In the presence of
floating debris sometimes transported by the flood
waters, major accidents might further happen, and the
interactions between large debris and air–water flows
remain unknown. Arguably, the research and develop-
ment community faces some massive challenges ahead
with air–water flow modelling, both physically and
computationally.
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Notation

Fr inflow Froude number (−)
Lr geometric scaling ratio, defined as the ratio of

prototype to model dimensions (−)
Mo Morton number (−)
Re Reynolds number (−)
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