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The Authors present a comprehensive review of
air–water flows in hydraulic structures, offering a
detailed overview of advancements made over the past
two decades in steady fast-moving flows. This knowl-
edge holds significant relevance for practitioners and
researchers, as they continuously strive to develop
novel approaches for designing efficient and sustain-
able hydraulic (infra)structure (Erpicum et al., 2021).
In the face of a changing climate, hydraulic structures
play an increasingly vital role in enhancing community
resilience. Studies indicate that flows associated with
extreme natural disasters will become more frequent
and more severe in the future (Dottori et al., 2020),
as evidenced by the destructive 2021 floods in Ger-
many, Belgium, and the Netherlands (Wüthrich et al.,
2025). These recent events underscore two key char-
acteristics: (1) the unsteady nature of such extreme
occurrences, and (2) their complex,multiphase compo-
sition involving air, sediments and (floating) debris. In
this Discussion, recent advances in the computation of
air–water flow properties in unsteady flow conditions
are presented and discussed, which complement the
review provided by the Authors. In addition, a compar-
ison between steady and unsteady flows is presented,
hinting on the importance of upscaling air–water mea-
surements against the (few) available field observations.

Highly unsteady multiphase flows are typical in
breaking bores, flash-floods, tsunamis and storm surges
(e.g. Figure 1). In these flows the free surface is highly
fragmented, with abrupt motions and strong turbu-
lence that generate continuous interactions between the
gas and liquid phases (Chanson 2013). These dynam-
ics create distinctive interfacial features, described by
Brocchini and Peregrine (2001) and Wüthrich et al.
(2021). Often termed “hydraulic jumps in transla-
tion”, these transient flows exhibit characteristics sim-
ilar to hydraulic jumps (Lubin & Chanson, 2017;
Wüthrich et al., 2022b). As highlighted by the Authors,

steady flows can count on long duration measurements
(typically 45 s or longer). However, this approach can-
not be applied to fast-moving highly-transient flows.
Instead, a paradigm shift is needed, involving multiple
repetitions and ensemble statistics to accurately capture
these unsteady phenomena (Chanson, 2020; Leng &
Chanson, 2019;Wüthrich et al., 2022a). Extensivemea-
surements of transient air–water flowswere undertaken
in sudden (flash-flood) flows on stepped slopes (Chan-
son, 2004), dam-break waves (Regout et al., 2025) and
breaking bores (Leng&Chanson, 2019;Wüthrich et al.,
2022a). These studies conducted detailed experiments
using an array of multiple phase detection (conductiv-
ity) probes sampled at very-high-frequency (100 kHz),
where one reference probe was used to synchronize all
repetitions, while the others investigated the air–water
flow properties at various elevations. By combining
multiple configurations, this approach delivered a com-
prehensive reconstruction of the air–water flow char-
acteristics, including bubble dynamics, void fractions
and turbulent characteristics. Wüthrich et al. (2021)
performed a detailed sensitivity analysis, revealing that
50 to 100 repetitions are necessary to obtain physically
meaningful and statistically reliable values for various
air–water flow properties.

The data for two flow conditions in Figure 2 showed
that the ensemble-median number of interfacesN (rep-
resenting the detected phase transitions between air
and water, thus correlating with bubble counts) var-
ied throughout the bore’s depth, reaching its maxi-
mum within the shear layer. The bubbles chord length
Lch = U·tch (where U is bore front celerity and tch the
bubble chord time) also displayed variability across the
bore height, with larger bubbles found predominantly
in the upper recirculation zone. Both findings show
similarities with stationary hydraulic jumps, revealing
the suitability of the ensemble approach to study highly
unsteady flows.
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Figure 1. Breakingbores: (a) tidal boreof theQiantangRiver on12October 2014propagating from right to left (photobyH. Chanson,
1/1600s, f5.6); (b) breaking bore in the laboratory Fr1 = 2.1 propagating from background to foreground (photo by D. Wüthrich,
1/1800s, f3.5).

Using an analytical solution of the advection–
diffusion equation, Chanson (2004) showed that the
vertical distribution of void fractions at the leading edge
of an unsteady flow exhibits a convex profile, where the
entrained and entrapped air pockets are mainly sub-
jected to buoyancy, drag and gravitational forces, there-
fore explaining the high depth-averaged void fractions.
Wüthrich et al. (2022a) reported similar observations
for a breaking bore propagating over an initial flow
depth d1, with the behaviour of the void fraction C well
captured by the equation (Shi et al., 2023b):

C = 0.9 ·
(

z − d1
Z90 − d1

)n
(1)

where z is the vertical coordinate and Z90 is the char-
acteristic elevation where C = 90%. The exponent n is
related to the depth-averaged void fractionCmean in the
roller through:

Cmean = 1
Z90

Z90∫
0
Cdz = 0.9

n + 1
(2)

The agreement between Equation (1) and experimental
data is showcased in Figure 3a for breaking bores (Shi
et al., 2023b; Wüthrich et al., 2022a) for T·U/d1 < 0.6.
A similar agreement was observed in the dam-break
wave datasets of Chanson (2004) and Regout et al.
(2025), at nappe impact of drop structures and bottom
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aeration devices (Chanson, 1988; Toombes & Chan-
son, 2008) and in the hydraulic jump of Estrella et al.
(2022) and Wüthrich et al. (2022b) for low Froude
numbers Fr1 = 2.1 and 2.4, as shown in Figure 3c. This
highlights the existence of this convex air–water pro-
file across a wide range of physical processes in both
highly fragmented steady andunsteady flowconditions,
as well as the suitability of Equation (1) to describe it.

Further downstream, air pockets began to inter-
act with the turbulent structures, breaking into finer
pieces and marking the transition to a concave pro-
file, which corresponds to lower depth-averaged void
fractions. Figure 3a and c illustrate how the initial con-
vex profile transitions into a concave profile, aligning
well with the typical steady flow profiles discussed by
the Authors. Notably, Shi et al. (2023b) identified the

(a) (b) (c)

Figure 2. Bubble characteristics in unsteady breaking bores: (a) image of borewith Fr1 = 2.1 (Shi et al. 2023b); (b) ensemblemedian
number of interfaces; (c) median bubble chord time Lch = U·tch, with U = bore celerity and tch = bubble chord time (interval
between water–air and air–water interface).

(a) (b)

(c) (d)

Figure 3. Results for air–water measurements: (a) void fraction profiles obtained with conductivity probes for a breaking bore with
Fr1 = 2.4 using ensemble-average analysis (Wüthrich et al. 2022a); (b) void fraction profiles for a breaking bore with Fr1 = 2.4
obtainedwith EBDT (Shi et al. 2023b); (c) void fraction profiles for a stationary hydraulic jumpswith Fr1 = 2.1 (Wüthrich et al. 2022b),
where xtoe represents the position of its roller toe; (d) comparison of depth-averaged void fraction Cmean for breaking bores and
hydraulic jumps. Note that Equations (16) and (17) refer to the original manuscript by Valero et al. (2024).
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presence of a shear layer in the breaking bores (Figure
3b), followed by a recirculation zone where profiles
typical of hydraulic jumps appear, as described byEqua-
tions (16) and (17) listed by Valero et al. (2024). These
observations further underscore similarities between
breaking bores and hydraulic jumps (Lubin & Chan-
son, 2017), sustained by the comparison conducted for
low Froude numbers (Fr1 = 2.1 and 2.4) in Figure 3d,
showing excellent agreement.

As highlighted by the Authors (Valero et al., 2024),
imaging techniques in air–water research have gained
popularity, particularly for highly unsteady flows,
where ultra-high-speed videos can offer both spatial
and temporal insights into the dynamics of rapidly
evolving air–water features. These techniques show
great promise. For instance, a novel enclosed bub-
ble detection technique (EBDT) showed the ability to
detect individual bubbles within the breaking roller,
enabling detailed analysis of void fraction and bub-
ble properties, as illustrated in Figure 3c (Shi et al.,
2023b). In terms of velocity and turbulence charac-
teristics, Shi et al. (2023a) introduced the single bub-
ble event detection (SBED) technique, which computes
pseudo-instantaneous interfacial velocities for individ-
ual bubbles in unsteady flows, in line with the seg-
mentation framework of Kramer et al. (2019). The
SBED technique showed good agreement with velocity
data derived from image-based optical flow (OF) and
particle tracking velocimetry (PTV). However, while
the non-intrusive nature of image-based approaches is
advantageous, they are generally restricted to the side-
walls and datamay be affected by sidewall effects, where
fewer bubbles, lower void fraction, and reduced veloci-
ties have been reported (Wüthrich et al., 2022b; Zhang
& Chanson, 2018). Despite inherent limitations, these
methods might collectively provide, when used along-
side intrusive probemeasurements, a comparative anal-
ysis of multiphase and turbulent features, underscor-
ing the importance of redundant measurements when
investigating highly unsteady flows.

Altogether, these results showcase the effectiveness
of the ensemble approach to obtain air–water flow
properties in highly unsteady flows, revealing similari-
ties between steady and unsteady flows, which can pro-
vide new and helpful insights to understand the under-
lying physics of unsteady phenomena. Ultimately, the
collection of detailed data on the multiphase nature of
unsteady flows will facilitate the development of robust
validation datasets for computational fluid dynamics
(CFD) modelling (e.g. Bombardelli, 2012; Leng et al.,
2018; Prosperetti & Tryggvason, 2009) and full-scale
extrapolation (e.g. Figure 1a).
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Notations

C void fraction (–)
Cmean depth-averaged void fraction (–)
d1 initial water depth (m)
Fr1 Froude number, Fr1 = U/(gd1)0.5 (–)
g gravitational constant, g = 9.81 (m s–2)
Lch ensemble-median bubble chord length, defined

as Lch = U·tch (m)
n exponent (–)
N ensemble-median number of interfaces (–)
T time (s)
tch bubble chord time (s)
U bore front celerity (m s–1)
x longitudinal (streamwise) coordinate (m)
xtoe position of the roller toe in hydraulic jumps

(m)
z vertical coordinate (m)
Z90 elevation where C = 0.9 (m)
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